In-Medium Similarity Renormalization Group

Basic Concepts, Extensions and Applications

Klaus Vobig

Institut für Kernphysik - Theoriezentrum

Bundesministerium für Bildung und Forschung

Motivation

- **g**reat progress with Hamiltonians derived from χ EFT
- developed versatile toolbox of ab initio many-body methods
 - Importance-Truncated No-Core Shell Model (IT-NCSM)
 - Coupled Cluster (CC)
 - Many-Body Perturbation Theory
 - Self-consistent Green's functions

Motivation

- **great progress with Hamiltonians derived from \chiEFT**
- developed versatile toolbox of ab initio many-body methods
 - Importance-Truncated No-Core Shell Model (IT-NCSM)
 - Coupled Cluster (CC)
 - Many-Body Perturbation Theory
 - Self-consistent Green's functions

In-Medium Similarity Renormalization Group (IM-SRG)

- promising novel and very flexible ab initio many-body method
- first applications: calculation of nuclear structure observables of closed-shell nuclei

K. Tsukiyama et al., PRL 106, 222502 (2011)

extension to multi-reference formulation for open-shell nuclei

H. Hergert et al., PRC 90, 041302 (2014)

construct effective interactions for, e.g., shell-model calculations

S. Bogner et al., PRL 113, 142501 (2014)

SRG-based Many-Body Methods

- tame strong short-range correlations
- "generic" decoupling of high- and low momenta in two- and three-body momentum space
- acceleration of model-space convergence

SRG-based Many-Body Methods

- tame strong short-range correlations
- "generic" decoupling of high- and low momenta in two- and three-body momentum space
- acceleration of model-space convergence

- decoupling of reference state of specific A-body system
- even further acceleration of model-space convergence
- new opportunities, e.g., valence-space interactions from ab initio treatment

SRG: Basic Concept & Formalism

transformation towards diagonal form w.r.t. specific basis

unitary transformation +++ SRG flow equation

$$\hat{H}(s) \equiv \hat{U}^{\dagger}(s)\hat{H}(0)\hat{U}(s) \quad \longleftrightarrow \quad \frac{\mathrm{d}}{\mathrm{d}s}\hat{H}(s) = \left[\hat{\eta}(s), \hat{H}(s)\right]$$

SRG induces many-body terms up to the A-body level

$$\hat{H}(s) = \hat{H}^{[0]}(s) + \hat{H}^{[1]}(s) + \dots + \hat{H}^{[A]}(s)$$

■ antihermitian generator $\hat{\eta}(s)$ determines decoupling behavior and decoupling pattern \rightarrow tailor SRG for specific applications

In-Medium SRG

■ decouple reference state $|\Phi\rangle = |i_1i_2...i_A\rangle$ from its ph-excitations $|\Phi_{i_1}^{a_1}\rangle$, $|\Phi_{i_1i_2}^{a_1a_2}\rangle$, ...

■ partition Hamiltonian $\hat{H} = \hat{H}^{d} + \hat{H}^{od}$, suppress "off-diagonal" part

 $\hat{\eta}(s) \equiv \left[\hat{H}^{\mathsf{d}}(s), \hat{H}(s)\right]$

■ reference state $|\Phi\rangle$ becomes ground-state of $\hat{H}(\infty)$ with eigenvalue $\langle\Phi|\hat{H}(\infty)|\Phi\rangle$

In-Medium SRG: Key Ingredients I

use normal-ordered form of operators throughout the evolution

$$\hat{H}(s) = E(s) + \sum_{pq} f_q^p(s) \left\{ \hat{p}^{\dagger} \hat{q} \right\}_{|\Phi\rangle} + \frac{1}{4} \sum_{pqrs} \Gamma_{rs}^{pq}(s) \left\{ \hat{p}^{\dagger} \hat{q}^{\dagger} \hat{s} \hat{r} \right\}_{|\Phi\rangle} + \dots$$

$$\hat{\eta}(s) = \sum_{pq} \eta_q^p(s) \left\{ \hat{p}^{\dagger} \hat{q} \right\}_{|\Phi\rangle} + \frac{1}{4} \sum_{pqrs} \eta_{rs}^{pq}(s) \left\{ \hat{p}^{\dagger} \hat{q}^{\dagger} \hat{s} \hat{r} \right\}_{|\Phi\rangle} + \dots$$

 \rightsquigarrow reference state $|\Phi\rangle$ of A-body system defines form of operators

truncate operators at normal-ordered two-body level

• derive flow equations for E(s), $f_a^p(s)$ and $\Gamma_{rs}^{pq}(s)$ from

$$\frac{\mathrm{d}}{\mathrm{d}s}\hat{H}(s) = \left[\hat{\eta}(s), \hat{H}(s)\right]$$

In-Medium SRG: Key Ingredients II

- flow equations are coupled system of first-order ordinary differential equations
- solved via numerical integration of ODE system until decoupling is reached
- typically: ~ 60 million coupled differential equations
- observables have to be evolved simultaneously ($\rightsquigarrow \hat{\eta}(s)$ depends on $\hat{H}(s)$)

reference states

- Single-Reference IM-SRG (SR-IM-SRG):
 - reference state is single Slater determinant from, e.g., Hartree-Fock calculation
 - applicable to closed-shell nuclei
- Multi-Reference IM-SRG (MR-IM-SRG):
 - reference state from previous NCSM or Hartree-Fock-Bogoliubov calculation
 - applicable to open-shell nuclei
 - additional terms in flow equations

NCSM & IM-NCSM

- use harmonic oscillator states with given $\hbar\Omega$ as single-particle basis
- construct Slater-determinant(s) from single-particle states
- truncate the many-body Slater-determinant basis at a maximum number of harmonic-oscillator excitation quanta N_{max}
- represent and diagonalize Hamiltonian in this model space

IM-NCSM

- use IM-SRG-evolved Hamiltonian as input for subsequent NCSM calculation
- MR-IM-SRG with NCSM reference state is used for the IM-NCSM approach
- convergence of NCSM massively improved w.r.t. N_{max}

IM-NCSM: Ground State Evolution

E. Gebrerufael et al, arXiv:1610.05254

- NCSM convergence accelerates with increasing IM-SRG flow parameter s
- IM-SRG succesfully decouples N_{max} = 0 space from all basis states at higher N_{max}
- $N_{\max} = 0$ eigenvalue < $E_0(s)$ \Rightarrow reference state not $N_{\max} = 0$ eigenstate
- effects of neglected many-body contributions beyond normal-ordered two-body level

IM-NCSM $N_{max} = 0(\bigcirc), 2(\blacksquare), 4(\blacktriangle), 6(\diamondsuit), 8(\bigstar), 10(\lor), 12(\blacktriangleright)$

IT-NCSM (horizontal band)

IM-SRG zero-body part E0(s) (black solid line)

IM-NCSM: Ground States Carbon & Oxygen Chain

E. Gebrerufael et al, arXiv:1610.05254

very good agreement between methods for oxygen (deviations ~ 2%)

larger method uncertainties for carbon isotopes, especially ¹²C

IM-NCSM: Spectra

E. Gebrerufael et al, arXiv:1610.05254

- good agreement for well converged states
- slow convergence w.r.t. N_{max}
 ↔ dominant contributions from outside N_{max} = 0 space
- surprising behavior of 0⁺ state in ¹²C and ¹⁶C

IM-NCSM bands: uncertainty estimate

New Chiral Interactions: Benchmarks

- ground-state energies and charge radii from the IM-SRG and CC
- very good agreement of many-body methods
- characteristic pattern from LO to N⁴LO
- compared to NN of E. & M.
 - more attractive 3N forces necessary (N³LO,N⁴LO)
 - radii improved, still underestimated

IM-SRG & SRPA: Transition Strengths

R. Trippel, doctoral thesis

N²LO_{sat} (blue line) NN_{EM}+3N₄₀₀ (dashed red line) exp. centroid (arrow) or spectra (gray)

- SRPA: 2p2h EoM approach

 → description of collective motions
- IM-SRG-evolved Hamiltonian as input
 - improved physical content of reference state
- transition strengths of high experimental interest
- good qualitiative agreement between experiment and theory

Thanks to my group

S. Alexa, S. Dentinger, E. Gebrerufael, T. Hüther, L. Kreher, L. Mertes, R. Roth, S. Schulz, H. Spielvogel, H. Spiess, C. Stumpf, A. Tichai, R. Trippel, R. Wirth, T. Wolfgruber Institut für Kemphysik, TU Darmstadt

Deutsche Forschungsgemeinschaft

DFG

Thank you for your attention!

Bundesministerium für Bildung und Forschung

OMPUTING TIME

