### Project B01 Electroweak interactions in nuclei and nuclear matter



TECHNISCHE UNIVERSITÄT DARMSTADT

Philipp Klos

**1st workshop of the CRC 1245** Darmstadt, November 22, 2016



# Motivation

Electroweak interactions probe our understanding of nuclear forces and help to understand processes from particle and astrophysics:

#### Interactions with external sources:

- Beta decay
- Electron scattering
- ▶ ...

#### **Beyond Standard Model physics:**

WIMP-nucleus scattering (Dark Matter detection)

#### Nuclear astrophysics:

Neutrino-nucleus interactions







- · Electroweak currents based on chiral effective field theory
- Uncertainty estimates from <sup>3</sup>H beta decay
- WIMP-nucleus scattering
- · Nucleosynthesis in neutrino driven winds
- Summary and outlook



- Electroweak currents based on chiral effective field theory
- Uncertainty estimates from <sup>3</sup>H beta decay
- WIMP-nucleus scattering
- · Nucleosynthesis in neutrino driven winds
- Summary and outlook

#### Chiral effective field theory



- Chiral EFT describes consistently both nuclear forces and currents
- Same low-energy constants appear in nuclear forces and currents
- Leading vector and axial two-body currents completely determined
   Park et al., PRC 67, 055206 (2003)
   A. Gårdestig and D. R. Phillips, PRL 96, 232301 (2006)
   D. Gazit, S. Quaglioni, and P. Navrátil, PRL 103, 102502 (2009)

|                   | 2N force       | 3N force  | 4N force   |
|-------------------|----------------|-----------|------------|
| LO                | XH             | —         | —          |
| NLO               | ХМАМЦ          | _         | _          |
| N <sup>2</sup> LO |                | HH HX XX  | _          |
| N <sup>3</sup> LO | X₩44-<br>₩₩₩₩- | 4  ₩   X- | 1141-1441- |



#### TECHNISCHE UNIVERSITÄT DARMSTADT

# **One-body currents**

Axial current at chiral order  $Q^0$ 



$$A_{1b}^{a\mu} = -g_A \bar{u}(p') \gamma_5 \left( \gamma^{\mu} - \not q \frac{q^{\mu}}{q^2 - m_{\pi}^2} \right) \frac{\tau^a}{2} u(p) \,,$$

Pion-decay is momentum dependent

# **Two-body currents**



At order  $Q^3$ , 2b currents enter:







- · Electroweak currents based on chiral effective field theory
- Uncertainty estimates from <sup>3</sup>H beta decay
- WIMP-nucleus scattering
- Nucleosynthesis in neutrino driven winds
- Summary and outlook

#### M P 3H 3He



TECHNISCHE UNIVERSITÄT DARMSTADT

 Binding energies of <sup>3</sup>H or <sup>3</sup>He yield relation between c<sub>D</sub> and c<sub>E</sub> Navrátil et al., PRL 99, 042501 (2007)

**Determination of**  $c_D$  and  $c_F$ 

- Beta-decay of triton to determine c<sub>D</sub>: Gazit, Quaglioni, Navrátil, PRL 103, 102502 (2009)
  - <sup>3</sup>H half-life precisely known
  - Uncorrelated with <sup>3</sup>H binding energy
- c<sub>D</sub> and c<sub>E</sub> fully determined from independent three-body observables



#### Determination of c<sub>D</sub>





Consider different cutoffs for two-body currents:



Carbone, Hebeler, Menéndez, Schwenk, PK, arXiv to appear

#### Significant current-regulator dependence of $c_D$ !

#### TECHNISCHE UNIVERSITÄT DARMSTADT

#### Determination of *c*<sub>D</sub> Impact on nuclear matter

Nuclear matter calculation with  $c_D$ ,  $c_E$  taken from the triton fit



Carbone, Hebeler, Menéndez, Schwenk, PK, arXiv to appear



- · Electroweak currents based on chiral effective field theory
- Uncertainty estimates from <sup>3</sup>H beta decay
- WIMP-nucleus scattering
- Nucleosynthesis in neutrino driven winds
- Summary and outlook

# Application WIMPs and direct detection



### We still don't know what dark matter is!

#### Weakly Interacting Massive Particles

- predicted by Supersymmetry (Extensions of Standard Model)
- expected density would account naturally for the observed dark matter density
- ► accessible for direct detection via interaction with nuclei (Xe, Ge, ...)
- ▶ m<sub>WIMP</sub> ≈ GeV-TeV

# Application WIMPs and direct detection



# We still don't know what dark matter is!

#### Weakly Interacting Massive Particles

- predicted by Supersymmetry (Extensions of Standard Model)
- expected density would account naturally for the observed dark matter density
- ► accessible for direct detection via interaction with nuclei (Xe, Ge, ...)
- ▶ m<sub>WIMP</sub> ≈ GeV-TeV
- Small cross sections → Underground detectors to shield background
- Detect nuclear recoils caused by (in-)elastic
   WIMP scattering
- Inelastic scattering: deexciation leads to unique signal



### Introduction Direct WIMP detection





#### WIMP-nucleus interaction



Transition amplitude of WIMP-nucleus scattering

$$\sigma \propto |\langle \text{final} | H_{\chi-\text{nucleus}} | \text{inital} \rangle|^2$$

#### Two tasks:

# Description of initial and final nuclear states

 $\rightarrow$  Interacting shell model

### **Description of WIMP-nucleus interaction**

#### WIMP-nucleus interaction



Cross section of WIMP-nucleus interaction depends on structure factor  $S_A(q)$ .

$$\frac{d\sigma}{dq^2} = \frac{2}{\pi v^2} \frac{1}{2} \sum_{S_i, S_f} \frac{1}{2J_i + 1} \sum_{M_i, M_f} |\langle f| \sum_A H_\chi^{SD} |i\rangle|^2 = \frac{8G_F^2}{(2J_i + 1)v^2} \frac{S_A(q)}{S_A(q)},$$

Spin-dependent (SD) WIMP-nucleus interaction:

$$H_{\chi}^{SD} = \sqrt{2}G_F \int d^3r \underbrace{A_{N\mu}(\mathbf{r})}_{\text{nucleon}} \underbrace{A_{\chi}^{\mu}(\mathbf{r})}_{\text{WMP}}$$

nucleon WIMP current current

Axial-vector-axial-vector couping

# Structure factors: Elastic scattering





 $u = q^2 b^2/2$  with harmonic oscillator length *b* 

| 129                            | Xe                             | <sup>131</sup> Xe            |                          |
|--------------------------------|--------------------------------|------------------------------|--------------------------|
| $\langle {\sf S}_{ ho}  angle$ | $\langle \mathbf{S}_n \rangle$ | $\langle {f S}_{ ho}  angle$ | $\langle {f S}_n  angle$ |
| 0.010                          | 0.329                          | -0.009                       | -0.272                   |

# Structure factors: Elastic scattering



 $\pi$ 

 $c_3, c_4, c_6$ 



- ► 2b currents → at low momentum transfer neutrons contribute to proton structure factor S<sub>p</sub>(u)
- $S_n(u)$  reduced by 20% for low momentum transfers

PK, Menéndez, Gazit, Schwenk, PRD 88, 083516 (2013)

# XENON100 spin-dependent limit



Structure factors and uncertainties in currents used in XENON100 spin-dependent analysis: XENON100, PRL 111, 021301 (2013)





- · Electroweak currents based on chiral effective field theory
- Uncertainty estimates from <sup>3</sup>H beta decay
- WIMP-nucleus scattering
- · Nucleosynthesis in neutrino driven winds
- Summary and outlook

### Nucleosynthesis in neutrino driven winds



Neutrino interactions determine Ye

 $u_e + n \rightleftharpoons p + e^ \bar{\nu}_e + p \rightleftharpoons n + e^+$ 

Neutron-rich ejecta:

$$\langle E_{\dot{\nu}_{e}} \rangle - \langle E_{\nu_{e}} \rangle > 4 \Delta_{np} - \left[ \frac{L_{\dot{\nu}_{e}}}{L_{\nu_{e}}} - 1 \right] \left[ \langle E_{\dot{\nu}_{e}} \rangle - 2 \Delta_{np} \right]$$

- neutron-rich ejecta: weak r-process
- proton-rich ejecta: vp-process

Energy difference related to symmetry energy (GMP+ 2012, Roberts+ 2012) Sensitivity to neutrino opacities?

1D Boltzmann transport simulation (DD2 EoS)



# Improvements of neutrino opacities



Most simulations use opacities based on the leading order elastic approximation (Bruenn 1985).

Improvements:

Weak magnetism (Horowitz 2002)

$$j^{\mu} = \bar{\psi}_{n} \left[ c_{v} \gamma^{\mu} + \frac{iF_{2}}{2M_{N}} \sigma^{\mu\nu} q_{\nu} - c_{A} \gamma^{\mu} \gamma_{5} \right] \psi_{p}$$

- Inelastic contributions (Reddy+ 1998)
- Additional opacity channels for v
  <sub>e</sub> (Direct URCA, Lattimer+ 1991)

$$\bar{\nu}_e + e^- + p \rightarrow n$$



### Impact opacities on $Y_e$



Fischer, GMP, Wu, Lohs, Qian, in preparation



Ejecta are always proton rich:  $\nu p$ -process. No weak r-process neutrino winds.



- · Electroweak currents based on chiral effective field theory
- Uncertainty estimates from <sup>3</sup>H beta decay
- WIMP-nucleus scattering
- Nucleosynthesis in neutrino driven winds
- Summary and outlook

### Summary



- ► Complete derivation of chiral two-body currents for electroweak interactions to (Q/Λ)<sup>3</sup> including all terms relevant for finite momentum transfer
- Significant current-cutoff dependence when fitting c<sub>D</sub>
- State-of-the-art large-scale shell-model calculations used to predict spin-independent / spin-dependent WIMP responses
- Electroweak interactions relevant for electron fraction in neutrino driven winds

# Outlook

- Application to  $0\nu\beta\beta$ ,  $\mu$ -capture, electron scattering, ...
- How do we choose regulators consistently in forces and currents?