Quenching of Spin-Isospin Strength in Electron and Proton Scattering

TECHNISCHE UNIVERSITÄT DARMSTADT

Peter von Neumann-Cosel Institut für Kernphysik, Technische Universität Darmstadt

Introduction

- Electromagnetic B(M1) transition strengths from (p,p') scattering
- The case of ²⁰⁸Pb
- The case of ⁴⁸Ca
- Forbidden beta decay and its magnetic analogue

Supported by DFG under contract SFB 1245

Spinflip M1 Resonance

- Fundamental excitation mode of the nucleus
- Analog of Gamow-Teller resonances with $T = T_0$
- Impact on current problems in nuclear structure and astrophysics
 - neutral-current neutrino interactions in supernovae
 - reaction cross sections in nucleosynthesis network calculations
 - neutrinoless double beta decay
 - tensor interaction and the evolution of shell structure
- Fairly well studied in *sd* and *fp*-shell nuclei
- Little is known in heavy nuclei

Isospin Symmetry

Y. Fujita, B. Rubio, W. Gelletly, Prog. Part. Nucl. Phys. 66, 549 (2011)

Quenching of GT Strength

M. Ichimura, H. Sakai, T. Wakasa, Prog. Part. Nucl. Phys. 56, 446 (2006)

Systematic reduction by a factor of about 2 Impact on weak interactions (g_A is renormalized in nuclei) Same behavior for spin-M1?

Quenching of Spin-M1 and GT Strength

What is meant by **quenching**?

M1 or GT resonances are valence-shell (0 h ω) excitations \rightarrow confined in a certain excitation energy region

experimental strength in that region

Quenching =

theoretical or sum rule prediction in that region

In model calculations quenching is often included by an effective g-factor

Quenching affects the spin part of the operators only, the orbital *g*-factor is found to be close to the free value.

Spin M1 and GT Strength

(p,n) at 0°

(p,p') at 0°

$$\frac{\mathrm{d}\sigma_{\mathrm{pn}}^{\mathrm{GT}}}{\mathrm{d}\Omega}(0^{\circ}) = \hat{\sigma}_{\mathrm{GT}}F(q,\omega)B(\mathrm{GT})$$

$$\frac{\mathrm{d}\sigma_{\mathrm{pp'}}^{\mathrm{GT}}}{\mathrm{d}\Omega}(0^{\circ}) = \hat{\sigma}_{\mathrm{M1}}F(q, E_{x})B(\mathrm{M1}_{\sigma\tau})$$

Transition strengths

$$B(\text{GT}) = \frac{C_{\text{GT}}^2}{2(2T_f + 1)} |\langle f||| \sum_k^A \sigma_k \tau_k |||i\rangle|^2$$
$$B(\text{M1}_{\sigma\tau}) = \frac{C_{\text{M1}}^2}{4(2T_f + 1)} |\langle f||| \sum_k^A \sigma_k \tau_k |||i\rangle|^2$$

Isospin symmetry

$$\hat{\sigma}_{
m M1} \simeq \hat{\sigma}_{
m GT}$$

J. Birkhan et al., Phys. Rev. C 93, 041302(R) (2016)

GT Unit Cross Section

GT unit cross section for (p,n) reaction at 297 MeV

M. Sasano et al., Phys. Rev. C 79, 024602 (2009)

Spin M1 and B(M1) Strength

B(M1) strength

$$B(M1) = \frac{3}{4\pi} |\langle f||g_l^{IS}\vec{l} + \frac{g_s^{IS}}{2}\vec{\sigma} - (g_l^{IV}\vec{l} + \frac{g_s^{IV}}{2}\vec{\sigma})\tau_0 ||i\rangle|^2 \mu_N^2$$

Spin M1 and B(M1) Strength

B(M1) strength

$$B(\mathrm{M1}) = \frac{3}{4\pi} |\langle f||g \mathbf{X} \mathbf{I} + \frac{g_{\mathrm{N}}^{\mathrm{IS}} \mathbf{\sigma} - (g \mathbf{X} \mathbf{I} + \frac{g_{s}^{\mathrm{IV}}}{2} \mathbf{\sigma}) \tau_{0} ||i\rangle|^{2} \mu_{\mathrm{N}}^{2}$$
$$\mathbf{B}(\mathrm{M1}) \cong \frac{3}{4\pi} \left(g_{s}^{\mathrm{IV}}\right)^{2} B(\mathrm{M1}_{\sigma\tau}) \mu_{\mathrm{N}}^{2}$$

Application to ²⁰⁸Pb

R.M. Laszewsi et al., PRL 61, 1710 (1988) R. Köhler et al., PRC 35, 1646 (1987)

$$\sum B(M1) = 14.8^{+1.5}_{-1.9} \,\mu_N^2$$

for E_x ≤ 8 MeV

I. Poltoratska et al., PRC 85, 041304 (2012)

$$\sum_{\text{for } E_x \le 8 \text{ MeV}} B(M1) = 16.0(1.2) \mu_N^2$$

$$\sum B(M1) = 20.5(1.3)\,\mu_N^2$$

for full resonance

Spinflip M1 Transition in ⁴⁸Ca

W. Steffen et al., Nucl. Phys. A 404, 413 (1983)

- Spinflip transition
- Very strong: $B(M1)\uparrow \approx 4 \mu_N^2$
- Test case for quenching

The Case of ⁴⁸Ca

- 75% of spin M1 strength concentrated in single peak
- Simple structure: almost pure neutron 1f $_{7/2} \rightarrow$ 1f $_{5/2}$ transition
- Reference case for quenching of spin-isospin strength
- (e,e') experiment at DALINAC W. Steffen et al., Nucl. Phys. A 404, 413 (1983) → B(M1)↑ = (3.9 ± 0.3) μ_N² ■ (γ,n) experiment at HIγS) J.R. Tompkins et al, Phys. Rev. C 84, 044331 (2011) → B(M1)↑ = (6.8 ± 0.5) μ_N²

Quenching in fp-Shell Nuclei

PvNC et al., Phys. Lett. B 443, 1 (1998)

G. Martínez-Pinedo et al., Phys. Rev. C 53, 2602(R) (1996)

The Case of ⁴⁸Ca: (p,p') Data

The Case of ⁴⁸Ca: (p,p') Data

Complete E1 response can be extracted from the data \rightarrow Project B04

⁴⁸Ca: Quenching of IS and IV part

$$B(M1) = \frac{3}{4\pi} |\langle f| |g_{\rm V}^{\rm I}\vec{l} + \frac{g_s^{\rm IS}}{2}\vec{\sigma} - (g_l^{\rm IV}\vec{L} + \frac{g_s^{\rm IV}}{2}\vec{\sigma})\tau_0 ||i\rangle|^2 \,\mu_{\rm N}^2$$

IV quenching factor is known but IS quenching can be dfifferent.

Two extremes:

- Assume the same quenching factors
- Assume no IS quenching

H. Matsubara et al., Phys. Rev. Lett. 115, 102501 (2015)

B(M1) Strength in ⁴⁸Ca from (p,p') and (p,n)

Results from hadronic reactions consistent with (e,e')

Search for Weak B(M1) Transitions

M1 Strength from (e,e') and (p,p')

M. Mathy et al., Phys. Rev. C, in preparation

Strength from (p,p') and (e,e') comparable for non-quenched isoscalar part

Relation between Spin-M2 and First-Forbidden Matrix Elements

C. Rangacharyulu et al., Phys. Lett. B 135, 29 (1984)

Orbital matrix elements are zero within error bars

180° Experiments

- Systematic study of analog transitions to forbidden decay in light nuclei
 - M2 (first forbidden): ¹⁶O, ^{42,44}Ca
 - M3 (second forbidden): ¹⁰B, ²²Ne
 - M4 (third forbidden): ⁴⁰Ar, ⁴⁰Ca
- Momentum transfer dependence of quenching: ^{40,48}Ca

Why 180° scattering?

Transverse response enhanced by 3 orders of magnitude!

Summary and Outlook

- New method for extraction of B(M1) transition strengths from forwardangle proton scattering
- Conflict between previous experimental results for the strong M1 transition in ⁴⁸Ca resolved, contribution from weak transitions verified
- Applicability to heavy nuclei demonstrated for ²⁰⁸Pb
- Future CRC project: Systematic study of quenching in magnetic transitions analogue to forbidden β decay

Spin-M1 resonance:

J. Birkhan, M. Mathy, N. Pietralla, V.Yu. Ponomarev, A. Richter, J. Wambach, *Institut für Kernphysik, TU Darmstadt, Germany* H. Matsubara, A. Tamii, *RCNP, Osaka, Japan*

Magnetic analogue of forbidden transitions:

S. Bassauer, A. D'Alessio, J. Enders, M. Hilcker, T. Klaus, C. Kremer, A. Krugmann, Miguel Molero Gonzalez (2/2017), P. Ries, M. Singer, G. Steinhilber, V. Werner

Quenching of Spin – Isospin Strength

 $\vec{\sigma} \cdot \vec{\tau}$ strength $\approx 50\%$ reduced

M1 Angular Distribution

- DWBA calculation
 - code DWBA07
 - effective proton-nucleus interaction (Love & Franey)
 - QPM wave functions

B(M1) Strength from IAS in ⁴⁸Sc

Spin M1 Strength in Heavy Nuclei from Proton Scattering

- C. Djalali et al., NPA 388, 1 (1982)
 - Heavily mixed with E1 strength (Coulomb excitation of PDR)
 - Problem: Conversion of cross sections to transition strengths

Momentum Transfer Dependence of GT Quenching

J. Menéndez, D. Gazit, A. Schwenk, Phys. Rev. Lett 107, 062501 (2011) 1.21.1 $GT(g_A+2b)/g_A$ 0.9 0.8 0.715050 100200250300 350 400 p [MeV]

- Difficult (if not impossible) to test with hadronic probes
- Test of selected M1 cases with electron scattering
- Two-body currents differ (vector vs. axialvector coupling)