B04: Electric dipole response and neutron equation of state

TECHNISCHE UNIVERSITÄT DARMSTADT

<u>Dmytro Symochko</u>

Supported by the Deutsche Forschungsgemeinschaft through grant SFB 1245

The electric polarizability is proportional to the inverse energy weighted sum rule (IEWSR) of the electric dipole response in nuclei

$$\alpha_D = \frac{\hbar c}{2\pi^2} \int_0^\infty \frac{\sigma_\gamma(E)}{E^2} dE = \frac{8\pi}{9} \int_0^\infty \frac{d B(E1)}{E} dE$$

Value of α_{D} observable

Additional value! Photoabsorption data is needed for modeling r- and p- processes.

Experimental site – Grand Raiden spectrometer@RCNP (Osaka)

Excitation by real photons – (γ, γ') , $(\gamma, \gamma' \gamma')$, $(\gamma, \gamma' n)$...

Experimental site – NEPTUN tagger@SDALINAC (Darmstadt)

Aims:

Excitation by virtual photons – (p,p')

- Systematic understanding of the electric dipole response in nuclei including the low-lying strength. Focus on Sn isotopes.
- Accurate determination of nuclear dipole polarizabilities
- Provide complete and consistent set of data for constraining the symmetry energy parameters

Experimental approaches and aims in B04

(p,p)'@RCNP (GRAND RAIDEN spectrometer)

- 300 MeV proton scattering at and close to 0°
- strong Coulomb excitation of 1⁻ states: E1 strength up to 25 MeV
- high resolution: $\Delta E = 25 30 \text{ keV}$ (FWHM)
- angular distributions: E1 / M1 separation by MDA

120Sn (p,p') data (SFB634)

A.M. Krumbholz et al., Phys. Lett. B 744 (2015) 7 T. Hashimoto et al., Phys. Rev. C 92 (2015) 031305

B(E1) Strength in ⁴⁸Ca

(γ, abs) - G.J. O'Keefe et al. Nucl. Phys. A 469, 239 (1987) – discarded because of the method (e, e'n) - S. Strauch et al., Phys. Rev. Lett. 85, 2913 (2000) – does not include (e,e'p) chanel

Dipole Polarizability of 48Ca

χEFT: G. Hagen et al., Nature Physics 12, 681 (2016) EDFs: X. Roca-Maza et al., Phys .Rev. C 92, 064304 (2015)

Paper "Electric Dipole Polarizability of 48Ca and Implications for the Neutron Skin" by J. Birkhan et al. submitted to PRL this week

Ongoing analysis on Sn isotopes data by Sergej Bassauer

Done in 2016: angle and energy calibration, background subtraction.

(p,p') - plans for 2017

Sn isotopes:

- Determine the double differential cross sections for all isotopes;
- ◆Perform MDA;
- Determine dipole polarizability;
- Extract gamma strength functions and level densities.

40,44,48Ca:

improved measurement of dipole polarizability by going to 400 MeV

NEPTUN photon tagging facility at SDALINAC

NEPTUN detectors systems

TECHNISCHE UNIVERSITÄT DARMSTADT

Detection systems:

γ:

GALATEA array **18** 3"×3" **LaBr₃:Ce** crystals

 2π coverage

neutrons:

Neutron Ball

16 liquid-scintillator detectors

 2π coverage

Digital DAQ built on the Multi-Branch System (GSI) and is based on Struck SIS3316 digitizers (250 MHz and 14 bit)

Tagged Bremsstrahlung spectrum

Positioning gamma detector directly in "tagged" beam and applying appropriate coincidence conditions shows the detector response to the quasimonochromatic gammas and allows the calibration of the focal plane detectors.

Commissioning results: first tagged transition

Results from ¹¹²Sn target run

Upgrade of the bending dipole magnet

Magnet upgrade: improved "efficiency" (tagging ratio)

Tagging ratio = (Total number of emitted BS photons)/(Number of collimated BS photons)

New electron beam dump and γ-collimator

Current background conditions

Runs without radiator show that main part of the beam correlated background comes

from electron beamdump (mixed neutron/gamma background).

Background count rate at 7 MeV – $0.25 \text{ s}^{-1*} 25 \text{ keV}^{-1}$ (current NEPTUN resolution).

Energy in the GALATEA (calibrated)

New focal plane detectors

Current design has 1.5 MeV energy bite: at least 20 settings of the spectrometer are needed to cover 5-35 MeV γ energy range with near 5 days of beam on the target for each. Which sums up to ~100 days of beam for every target. Seems unrealistic!

Focal plane upgrade: SiPM tests

Tests: 1x1 mm SiPM (SeNSL FC-10035) Time resolution with LED pulser: 140 ps Time resolution with Sr-90: 600 ps Deposited energy could be separated from dark counts.

Sum Energy Fiber 1 vs Fiber 2

Time difference between scintillators

NEPTUN tagger - timeline

- Upgraded magnet is expected to return to IKP late summer 2017
- Before that date all possible construction work (Beam dump, shielding, chamber focal plane detectors, DAQ) should be finished
- Commissioning runs end of 2017
- Test with well studied case (²⁰⁸Pb)
- Production runs with ¹¹²Sn-¹²⁴Sn targets 2nd half of 2018

Double-gamma nuclear decay

Double-gamma decay features:

for 0+ → 0+ transitions:
single photon decay strictly forbidden
Γγγ/Γγ ~ 10⁻⁴

F≈Γ(internal pair production)

VOLUME 53, NUMBER 20

PHYSICAL REVIEW LETTERS

12 NOVEMBER 1984

Double Gamma Decay in ⁴⁰Ca and ⁹⁰Zr

J. Schirmer, D. Habs, R. Kroth, N. Kwong, D. Schwalm, and M. Zirnbauer Max-Planck-Institut für Kernphysik and Physikalisches Institut der Universität Heidelberg, D-6900 Heidelberg, Federal Republic of Germany

Competitive double-gamma nuclear decay

Competitive double-gamma decay features:

•decay competing with allowed single gamma decay
•Γγγ/Γγ <<10⁻⁴
•Γ≈Γγ
•has never been observed, despite a few searches in last 30 years

Competitive double-gamma nuclear decay

Competitive double-gamma decay features:

•decay competing with allowed single gamma decay
•Γγγ/Γγ <<10⁻⁴
•Γ≈Γγ
•has never been observed, despite a few searches in last 30 years

doi:10.1038/nature15543

Observation of the competitive double-gamma nuclear decay

C. Walz¹, H. Scheit¹, N. Pietralla¹, T. Aumann¹, R. Lefol^{1,2} & V. Yu. Ponomarev¹

Experimental setup

- ◆ 5 LaBr₃(Ce) detectors
- εFE(662 keV) = 1.5%
- εγγ≈ 4 · 10⁻⁴
- ◆ ΔE = 3% (FWHM)
- ◆ Δt = 1 ns (FWHM)
- data taking: 53 days
- source: ¹³⁷Cs (600 kBq)
- thick Pb blocks between detectors

Results

23.11.2016 | Institut für Kernphysik TU Darmstadt | Dmytro Symochko | 28

Active shielding

Heidelberg-Darmstadt Crystal- ball full solid angle 4 π 162 Nal(TI) detectors

23.11.2016 | Institut für Kernphysik TU Darmstadt | Dmytro Symochko | 29

Passive shielding ("LeadBall")

Competitive double-gamma decay – plans for 2017

Production and installation of LeadBall

 Construction and testing of DAQ for combined CrystallBall/Galatea system

◆ Comissioning full setup with $0+\rightarrow0+$ double-gamma decay measurements (e.g. 90Sr) and ¹³⁷Cs

• Search for cases dominated by E1E1 transitions (possible candidate $2+\rightarrow 0+$ in ⁵⁴Ce, populated in the decay of ⁵⁴Mn)

Thank You!

Nuclear Resonance Fluorescence Characterisation of transitions

- Transition $J_i^{\pi_i} \rightarrow J_f^{\pi_f}$
- Multipole order *L* given by $|J_i J_f| \le L \le |J_i + J_f|$
- Character σ is electric for $\pi_i = (-1)^L \cdot \pi_f$ and magnetic for $\pi_i = (-1)^{L+1} \cdot \pi_f$
- Reduced transition probabilities are proportional to the reduced transition matrix element

 $B(\sigma L) \propto |\langle f \parallel M(\sigma L) \parallel i \rangle|^2$

23.11.2016 | Institut für Kernphysik TU Darmstadt | Dmytro Symochko | 34

