Nucleosynthesis in core-collapse supernovae

B06

Pls: Almudena Arcones, Gabriel Martínez-Pinedo

Doctoral researchers: Julia Bliss, Carlos Mattes, André Sieverding

Core-collapse supernovae

End of massive stars, birth of neutron stars

All forces of nature are involved

Major contribution to chemical history of the universe

- Supernova simulations
- Matter properties (B04, B05)
- Neutrino-matter interactions (B01)
- Reactions on nuclei (B02)

Nucleosynthesis

Nucleosynthesis in supernovae

Shock:

- Fe group
- Radioactive isotopes (²⁶Al, ⁴⁴Ti)
- Neutrinos (~ 10⁵⁸ v)
 - affect the shock-heated
 explosive nucleosynthesis

Neutrino-driven wind:

• Heavy elements (Sr to Ag?)

Arcones & Janka, 2011

Simulation requirements:

- ✓ Hydro code FLASH (Fryxell et al. 2000) and neutrino treatment ASL (Perego et al. 2016)
- ✓ Tracer particles: post-processing nucleosynthesis (M. Witt)
- EoS to low ρ and T (H. Yasin)
- Reduced reaction network into FLASH (M. Reichert)

In collaboration with S. Couch (MSU)

2D Simulation: FLASH+ASL

SFB 1245

Performed on Lichtenberg High Performance Computer of TU Darmstadt

2D Simulation: tracers

Performed on Lichtenberg High Performance Computer of TU Darmstadt

Neutrino luminosities and energies

- Goal: explosive nucleosynthesis for different explosion energies
- Vary neutrino heating (Couch et al. 2015)
- Problem: neutrino treatment and neutrino-matter reactions (B01)
- Comparison of neutrino transports
- Strategy:
 - neutrino-driven wind simulations with improved transport
 - post-processing nucleosynthesis varying $Y_{\ensuremath{\textit{e}}}$

Nucleosynthesis in neutrino-driven winds

- Goal: study astrophysical and nuclear uncertainties
- Based on existing simulations
- Neutrino uncertainties: variation of wind parameters (Ye)

• Initial conditions:

Nuclear statistical equilibrium (NSE)

- Alpha-rich freeze out
- Slightly neutron-rich conditions:
 - weak r-process
- Close to stability: slow beta decay

Nucleosynthesis in neutrino-driven winds

SFB 1245

Astrophysical uncertainties

Reference case from simulations: S=86 k_B/nuc, Y_e=0.47, τ =11 ms

- Key nucleosynthesis quantity → neutron-to-seed ratio
- Formation of lighter heavy elements including Sr, Y, Zr up to Ag (Hoffman 1996, Arcones & Bliss 2014)

Nuclear physics uncertainties: (α,n) reaction rates

SFB

- Most abundant species are within range 26 ≤ Z ≤ 45
- weak r-process: Slow β-decay
 → (α,n) move matter to high Z
- Theoretical uncertainties:
 alpha optical potential
- (a,n) rates modified by constant factors

In collaboration with F. Montes and J. Pereira (MSU)

 Measurement of ⁷⁵Ga(α,n) at ReA3 (NSCL/MSU) on July 5-15, 2016

Bliss et al. (to be submitted)

Astrophysical and nuclear physics uncertainties

- Variation of astrophysical conditions
 (Y_e) and nuclear physics uncertainties
 (★ = 10, ▼ = 1/10)
- Important to reduce nuclear physics uncertainties
- Use observations to constrain astrophysical conditions

Bliss et al. (to be submitted)

November 23rd, 2016 | SFB 1245 workshop 2016 | Project B06 | Julia Bliss | 13

Neutrino nucleosynthesis

- Emission of 10⁵⁸ neutrinos
- ⟨*E_v*⟩ ≈ 8 20 MeV
- Inverse β-decay
- Particle evaporation
- Capture of spallation products

Set of cross sections based on RPA and a statistical model (L. Huther)

SFB 1

Neutrino spectra from state-of-the art SN simulations

 Improved treatment of neutrino transport (B01,B05): lower v energies

Current standard:

Low v energies: $\langle E_{\nu_e} \rangle = 9 \text{ MeV}$ $\langle E_{\bar{\nu}_e} \rangle = 13 \text{ MeV}$ $\langle E_{\nu_{\mu,\tau}} \rangle = 13 \text{ MeV}$

Neutrino spectra from state-of-the art SN simulations

- v cross sections are more sensitive to details of nuclear structure at low energies
- Charged-current v-nucleus cross sections based on measured Gamow-Teller strengths for key nuclei (e.g., ²⁶Al)

Neutrino nucleosynthesis results

Nucleosynthesis calculation for **1D piston driven explosion models** performed with the **KEPLER** hydrodynamics code (Heger et al.)

Averaged production factors:

	No v	Low <i>E</i> v ¹	High <i>E</i> v ²
⁷ Li	0.001	0.07	0.91
¹¹ B	0.005	0.45	1.81
¹⁵ N	0.06	0.09	0.15
¹⁹ F	0.12	0.25	0.40
¹³⁸ La	0.12	0.86	1.70
¹⁸⁰ Ta*	0.6	1.49	2.67

 $1\rangle\langle E_{\nu_e}\rangle = 9 \text{ MeV}, \langle E_{\bar{\nu}_e,\nu_x}\rangle = 13 \text{ MeV}$

 $2)\langle E_{\nu_e}\rangle=13\;{\rm MeV}, \langle E_{\bar{\nu}_e}\rangle=16\;{\rm MeV}, \langle E_{\nu_x}\rangle=19\;{\rm MeV}$

*) Only about 40% of $^{180}\mathrm{Ta}$ survives in the long lived isomeric state

- Reduced but still significant enhancement of production factors
- · More consistent with estimates for contributions from cosmic rays

Effects on radioactive nuclei

 ${}^{60}\text{Fe}/{}^{26}\text{Al} \approx 1.25$ (observations give ≈ 0.35)

Production factors

Isotope	Without v	Low energy v	High energy v
²⁶ AI	5.19	5.64	6.56
²² Na	0.20	0.27	0.39

Outlook: Extension to neutrino-driven (e.g., Janka et al.) and multidimensional (e.g., Hix et al.) explosion models

B06: Project goals

SFB 1

- Long-time multidimensional simulations
- Explosive shock nucleosynthesis based on neutrino-driven explosions
- · Wind nucleosynthesis and its dependency on neutrino opacities and EoS

