Nuclear Haloes and how to study them through reactions

Pierre Capel

22 November 2016

Halo nuclei

Exotic nuclear structures are found far from stability In particular halo nuclei with peculiar quantal structure :

- Light, n-rich nuclei
- Low S_n or S_{2n}

Exhibit large matter radius

due to strongly clusterised structure :

neutrons tunnel far from the core and form a halo

One-neutron halo

¹¹Be \equiv ¹⁰Be + n ¹⁵C \equiv ¹⁴C + n Two-neutron halo ⁶He \equiv ⁴He + n + n ¹¹Li \equiv ⁹Li + n + n

Proton haloes are possible but less probable : ⁸B, ¹⁷F

Reactions with halo nuclei

Halo nuclei are fascinating objects but difficult to study $[\tau_{1/2}(^{11}Be)= 13 \text{ s}]$ \Rightarrow require indirect techniques, like reactions

Elastic scattering

Breakup ≡ dissociation of halo from core by interaction with target

Need good understanding of the reaction mechanism i.e. an accurate theoretical description of reaction coupled to a realistic model of projectile

Reactions with halo nuclei

Halo nuclei are fascinating objects but difficult to study $[\tau_{1/2}(^{11}Be)= 13 \text{ s}]$ \Rightarrow require indirect techniques, like reactions

Elastic scattering

Breakup ≡ dissociation of halo from core by interaction with target

Need good understanding of the reaction mechanism i.e. an accurate theoretical description of reaction coupled to a realistic model of projectile

... or a reaction-independent observable

Framework

Projectile (*P*) modelled as a two-body system : core (*c*)+loosely bound neutron (n) described by $H_0 = T_r + V_{cn}(\mathbf{r})$

 V_{cn} adjusted to reproduce bound state Φ_0 and resonances

Target *T* seen as structureless particle *P*-*T* interaction simulated by optical potentials \Rightarrow collision reduces to three-body scattering problem :

$$[T_R + H_0 + V_{cT} + V_{nT}] \Psi(\boldsymbol{r}, \boldsymbol{R}) = E_T \Psi(\boldsymbol{r}, \boldsymbol{R})$$

with initial condition $\Psi(\mathbf{r}, \mathbf{R}) \xrightarrow[Z \to -\infty]{} e^{iKZ + \cdots} \Phi_0(\mathbf{r})$

Various techniques to solve this equation : CDCC, eikonal,...

¹¹Be+Pb @ 69AMeV : Angular distribution

Theory : [Goldstein, Baye, P.C., PRC 73, 024602 (2006)] Data : [Fukuda *et al.* PRC 70, 054606 (2004)]

Dynamical model in excellent agreement with experiment

¹¹Be+C @ 67AMeV : Energy distribution

Theory : [Goldstein, Baye, P.C., PRC 73, 024602 (2006)] Data : [Fukuda *et al.* PRC 70, 054606 (2004)]

Excellent agreement with experiment Peak due to a $5/2^+$ resonance described in the $d_{5/2}$ partial wave

However...

... results depends on V_{cT} (and slightly on V_{nT})

Since the core *c* is itself exotic, V_{cT} is usually poorly known \Rightarrow need an observable independent from the reaction mechanism

2 Reaction model

[P.C., Hussein, Baye, PLB 693, 448 (2010)]

Very similar features for scattering and breakup :

- oscillations at forward angles
- Coulomb rainbow (~ 2°)
- oscillations at large angles

 \Rightarrow projectile scattered similarly bound or broken up

[P.C., Hussein, Baye, PLB 693, 448 (2010)]

Very similar features for scattering and breakup :

- oscillations at forward angles
- Coulomb rainbow (~ 2°)
- oscillations at large angles

 \Rightarrow projectile scattered similarly bound or broken up

Explained by Recoil Excitation and Breakup model...

REB assumes [Johnson, Al-Khalili, Tostevin PRL 79, 2771 (1997)]

• adiabatic approximation

•
$$V_{\mathrm{n}T} = 0$$

 \Rightarrow excitation and breakup due to recoil of the core

REB assumes [Johnson, Al-Khalili, Tostevin PRL 79, 2771 (1997)]

• adiabatic approximation

•
$$V_{\mathrm{n}T} = 0$$

 \Rightarrow excitation and breakup due to recoil of the core

Elastic scattering :
$$\frac{d\sigma_{\rm el}}{d\Omega} = |F_{00}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{\rm pt}$$

with $F_{00} = \int |\Phi_0|^2 e^{i \mathbf{Q} \cdot \mathbf{r}} d\mathbf{r} \qquad \mathbf{Q} \propto (\mathbf{K} - \mathbf{K}')$

REB assumes [Johnson, Al-Khalili, Tostevin PRL 79, 2771 (1997)]

• adiabatic approximation

•
$$V_{\mathrm{n}T} = 0$$

 \Rightarrow excitation and breakup due to recoil of the core

Elastic scattering : $\frac{d\sigma_{\rm el}}{d\Omega} = |F_{00}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{\rm pt}$ with $F_{00} = \int |\Phi_0|^2 e^{i\mathbf{Q}\cdot\mathbf{r}} d\mathbf{r} \qquad \mathbf{Q} \propto (\mathbf{K} - \mathbf{K}')$ \Rightarrow scattering of compound nucleus \equiv

form factor × scattering of pointlike nucleus

REB assumes [Johnson, Al-Khalili, Tostevin PRL 79, 2771 (1997)]

• adiabatic approximation

•
$$V_{\mathrm{n}T} = 0$$

 \Rightarrow excitation and breakup due to recoil of the core

Elastic scattering :
$$\frac{d\sigma_{el}}{d\Omega} = |F_{00}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{pt}$$

with $F_{00} = \int |\Phi_0|^2 e^{i\mathbf{Q} \cdot \mathbf{r}} d\mathbf{r}$ $\mathbf{Q} \propto (\mathbf{K} - \mathbf{K}')$
 \Rightarrow scattering of compound nucleus \equiv

form factor × scattering of pointlike nucleus

Similarly for breakup :
$$\frac{d\sigma_{\text{bu}}}{dEd\Omega} = |F_{E0}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{\text{pt}}$$

with $|F_{E0}|^2 = \sum_{ljm} \left| \int \Phi_{ljm}(E) \Phi_0 e^{i \mathbf{Q} \cdot \mathbf{r}} d\mathbf{r} \right|^2$

 \Rightarrow explains similarities in angular distributions provides the idea for the ratio method...

Ratio method

$$d\sigma_{\rm bu}/d\sigma_{\rm el} = |F_{E0}(\boldsymbol{Q})|^2/|F_{00}(\boldsymbol{Q})|^2$$

- independent of reaction mechanism not affected by V_{PT}; i.e. the same for all targets
- probes only projectile structure

Test this using a dynamical reaction model,

- without adiabatic approximation
- including V_{nT}

Ratio method

$$d\sigma_{\rm bu}/d\sigma_{\rm el} = |F_{E0}(\boldsymbol{Q})|^2/|F_{00}(\boldsymbol{Q})|^2$$

- independent of reaction mechanism not affected by V_{PT}; i.e. the same for all targets
- probes only projectile structure

Test this using a dynamical reaction model,

- without adiabatic approximation
- including V_{nT}

Alternative :

$$d\sigma_{\rm bu}/d\sigma_{\rm sum} = |F_{E0}|^2$$

= $\sum_{ljm} \left| \int \Phi_{ljm}(E) \Phi_0 e^{i\mathbf{Q} \cdot \mathbf{r}} d\mathbf{r} \right|^2$
with $\frac{d\sigma_{\rm sum}}{d\Omega} = \frac{d\sigma_{\rm el}}{d\Omega} + \frac{d\sigma_{\rm inel}}{d\Omega} + \int \frac{d\sigma_{\rm bu}}{dEd\Omega} dE$

Testing with dynamical model of reaction ¹¹Be+Pb @ 69AMeV

[P.C., Johnson, Nunes, PLB 705, 112 (2011) and PRC 88, 044602 (2013)]

- removes most of the angular dependence
- REB predicts ratio = $|F_{E0}|^2$ confirmed by our calculations
- \Rightarrow probe structure with little dependence on reaction

¹¹Be+C @ 67AMeV

Same result on C target (i.e. nuclear dominated)

Very different $d\sigma_{\rm el}/d\Omega$ and $d\sigma_{\rm bu}/d\Omega$ but same ratio \Rightarrow independent of reaction mechanism

(In)sensitivity to V_{PT}

Similar for Coulomb and nuclear dominated collisions \Rightarrow independent of the reaction mechanism \Rightarrow probes only projectile structure

Sensitivity to projectile description

- Sensitive to both binding energy and orbital in both shape and magnitude
- Works better for loosely-bound projectiles (adiabatic approximation)

Sensitivity to radial wave function

Calculations performed with different initial radial wave functions

- Smaller sensitivity than binding energy and partial wave
- At forward angles, scales with ANC
- At larger angles, probes the internal part of the wave function

Valid also at low energy ¹¹Be+ C, Ca, Pb @ 20AMeV

[Colomer, P.C., Nunes, Johnson, PRC 93, 054621 (2016)]

 \Rightarrow works also at low energy (HIE-Isolde, Re12@FRIB,...)

Extension to charged cases

What happens when **p** instead of n? Tests performed for ${}^{8}B \equiv {}^{7}Be + p(p3/2)$ @ 44AMeV on C

Similar result as for *c*-n structure even if V_{pT} includes Coulomb

Extension to two-neutron haloes

Test on ¹¹Li + Pb @ 70AMeV

[Pinilla, Descouvemont, Baye, PRC 85, 054610 (2012)]

calculations by E. C. Pinilla

- Similar angular distributions for elastic scattering and breakup
- Ratio is smooth
- Need to extend REB to three-body projectiles

Experimental hopes

Scattering and breakup of ¹¹Li on Pb measured at TRIUMF

The breakup probability

$$P_{\rm bu}(\theta) = \frac{d\sigma_{\rm bu}/d\Omega}{d\sigma_{\rm el}/d\Omega + d\sigma_{\rm bu}/d\Omega}$$

follows a smooth curve, as expected by ratio method

Excellent agreement with precise calculations

 \Rightarrow ratio could be extended to Borromean nuclei

[Fernàndez-Garcìa et al. PRL 110, 142701 (2013)]

Summary and prospect

- Halo nuclei exhibit a strongly clusterised structure : core + halo
- Studied mostly through reactions
 - elastic scattering
 - breakup
- Mechanism of reactions with halo nuclei understood but there remain uncertainties : optical potential choice
- Can be used at low energy (20AMeV) and for proton haloes
- Can it be extended to Borromean nuclei?
- Can it be used experimentally?

Thanks to my collaborators

Filomena Nunes

Daniel Baye Edna Pinilla Frederic Colomer

Mahir Hussein

Ron Johnson

Role of V_{nT}

REB neglects V_{nT} , it shifts slightly the angular distributions [R. Johnson *et al.* PRL 79, 2771 (97)]

 \Rightarrow responsible for the residual oscillations in the ratio

Role of V_{nT}

Same conclusion on C

Oscillations at 2–4° due to V_{nT} V_{nT} known \Rightarrow well under control