Nuclear Haloes

and how to study them through reactions

Pierre Capel

ECOLE POLYTECHNIQUE DE BRUXELLES

TECHNISCHE UNIVERSITAT DARMSTADT

22 November 2016

(1) Halo nuclei

(2) Reaction model
(3) Ratio method

Halo nuclei

Exotic nuclear structures are found far from stability In particular halo nuclei with peculiar quantal structure :

- Light, n-rich nuclei
- Low S_{n} or $S_{2 \mathrm{n}}$

Exhibit large matter radius due to strongly clusterised structure : neutrons tunnel far from the core and form a halo

One-neutron halo
${ }^{11} \mathrm{Be} \equiv{ }^{10} \mathrm{Be}+\mathrm{n}$
${ }^{15} \mathrm{C} \equiv{ }^{14} \mathrm{C}+\mathrm{n}$
Two-neutron halo
${ }^{6} \mathrm{He} \equiv{ }^{4} \mathrm{He}+\mathrm{n}+\mathrm{n}$
${ }^{11} \mathrm{Li} \equiv{ }^{9} \mathrm{Li}+\mathrm{n}+\mathrm{n}$

Proton haloes are possible but less probable : ${ }^{8} \mathrm{~B},{ }^{17} \mathrm{~F}$

Reactions with halo nuclei

Halo nuclei are fascinating objects but difficult to study $\left[\tau_{1 / 2}\left({ }^{11} \mathrm{Be}\right)=13 \mathrm{~s}\right]$
\Rightarrow require indirect techniques, like reactions
Elastic scattering

Breakup \equiv dissociation of halo from core by interaction with target

Need good understanding of the reaction mechanism i.e. an accurate theoretical description of reaction coupled to a realistic model of projectile

Reactions with halo nuclei

Halo nuclei are fascinating objects but difficult to study $\left[\tau_{1 / 2}\left({ }^{11} \mathrm{Be}\right)=13 \mathrm{~s}\right]$
\Rightarrow require indirect techniques, like reactions
Elastic scattering
Breakup \equiv dissociation of halo from core by interaction with target

Need good understanding of the reaction mechanism i.e. an accurate theoretical description of reaction coupled to a realistic model of projectile

(9) Halo nuclei

(2) Reaction model

(3) Ratio method

Framework

Projectile (P) modelled as a two-body system : core (c)+loosely bound neutron (n) described by $H_{0}=T_{r}+V_{c \mathrm{n}}(\boldsymbol{r})$
$V_{c \mathrm{n}}$ adjusted to reproduce bound state Φ_{0} and resonances

Target T seen as structureless particle

$P-T$ interaction simulated by optical potentials \Rightarrow collision reduces to three-body scattering problem :

$$
\left[T_{R}+H_{0}+V_{c T}+V_{\mathrm{n} T}\right] \Psi(\boldsymbol{r}, \boldsymbol{R})=E_{T} \Psi(\boldsymbol{r}, \boldsymbol{R})
$$

with initial condition $\Psi(\boldsymbol{r}, \boldsymbol{R}) \underset{Z \rightarrow-\infty}{\longrightarrow} e^{i K Z+\cdots} \Phi_{0}(\boldsymbol{r})$
Various techniques to solve this equation : CDCC, eikonal,...

${ }^{11} \mathrm{Be}+\mathrm{Pb} @ 69 \mathrm{AMeV}$: Angular distribution

Theory : [Goldstein, Baye, P.C., PRC 73, 024602 (2006)] Data : [Fukuda et al. PRC 70, 054606 (2004)]

Dynamical model in excellent agreement with experiment

${ }^{11} \mathrm{Be}+\mathrm{C} @ 67 \mathrm{AMeV}$: Energy distribution

Theory : [Goldstein, Baye, P.C., PRC 73, 024602 (2006)] Data : [Fukuda et al. PRC 70, 054606 (2004)]

Excellent agreement with experiment
Peak due to a $5 / 2^{+}$resonance described in the $d_{5 / 2}$ partial wave

However. . .

\ldots. results depends on $V_{c T}$ (and slightly on $V_{\mathrm{n} T}$)

Since the core c is itself exotic, $V_{c T}$ is usually poorly known \Rightarrow need an observable independent from the reaction mechanism

(1) Halo nuclei

(2) Reaction model

(3) Ratio method

Analysis of angular distributions

[P.C., Hussein, Baye, PLB 693, 448 (2010)] Very similar features for scattering and breakup :

- oscillations at forward angles
- Coulomb rainbow ($\sim 2^{\circ}$)
- oscillations at large angles
\Rightarrow projectile scattered similarly bound or broken up

Analysis of angular distributions

${ }^{11} \mathrm{Be}+\mathrm{Pb} @ 69 \mathrm{AMeV}$

[P.C., Hussein, Baye, PLB 693, 448 (2010)] Very similar features for scattering and breakup :

- oscillations at forward angles
- Coulomb rainbow ($\sim 2^{\circ}$)
- oscillations at large angles
\Rightarrow projectile scattered similarly bound or broken up
Explained by Recoil Excitation and Breakup model. . .

Recoil Excitation and Breakup

REB assumes [Johnson, Al-Khalili, Tostevin PRL 79, 2771 (1997)]

- adiabatic approximation
- $V_{\mathrm{n} T}=0$
\Rightarrow excitation and breakup due to recoil of the core

Recoil Excitation and Breakup

REB assumes [Johnson, Al-Khalili, Tostevin PRL 79, 2771 (1997)]

- adiabatic approximation
- $V_{\mathrm{n} T}=0$
\Rightarrow excitation and breakup due to recoil of the core
Elastic scattering: $\quad \frac{d \sigma_{\mathrm{el}}}{d \Omega}=\left|F_{00}\right|^{2}\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{pt}}$
with $F_{00}=\int\left|\Phi_{0}\right|^{2} e^{i \boldsymbol{Q} \cdot \boldsymbol{r}_{r}} d \boldsymbol{r} \quad \boldsymbol{Q} \propto\left(\boldsymbol{K}-\boldsymbol{K}^{\prime}\right)$

Recoil Excitation and Breakup

REB assumes [Johnson, Al-Khalili, Tostevin PRL 79, 2771 (1997)]

- adiabatic approximation
- $V_{\mathrm{n} T}=0$
\Rightarrow excitation and breakup due to recoil of the core
Elastic scattering: $\quad \frac{d \sigma_{\mathrm{el}}}{d \Omega}=\left|F_{00}\right|^{2}\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{pt}}$
with $F_{00}=\int\left|\Phi_{0}\right|^{2} e^{i \boldsymbol{Q} \cdot \boldsymbol{r}^{\prime}} d \boldsymbol{r} \quad \boldsymbol{Q} \propto\left(\boldsymbol{K}-\boldsymbol{K}^{\prime}\right)$
\Rightarrow scattering of compound nucleus \equiv
form factor \times scattering of pointlike nucleus

Recoil Excitation and Breakup

REB assumes [Johnson, Al-Khalili, Tostevin PRL 79, 2771 (1997)]

- adiabatic approximation
- $V_{\mathrm{n} T}=0$
\Rightarrow excitation and breakup due to recoil of the core
Elastic scattering: $\quad \frac{d \sigma_{\mathrm{el}}}{d \Omega}=\left|F_{00}\right|^{2}\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{pt}}$
with $F_{00}=\int\left|\Phi_{0}\right|^{2} e^{\boldsymbol{Q}} \cdot \boldsymbol{r}_{d \boldsymbol{r}} \quad \boldsymbol{Q} \propto\left(\boldsymbol{K}-\boldsymbol{K}^{\prime}\right)$
\Rightarrow scattering of compound nucleus \equiv
form factor \times scattering of pointlike nucleus
Similarly for breakup : $\frac{d \sigma_{\mathrm{bu}}}{d E d \Omega}=\left|F_{E O}\right|^{2}\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{pt}}$
with $\left|F_{E 0}\right|^{2}=\sum_{l j m}\left|\int \Phi_{l j m}(E) \Phi_{0} e \boldsymbol{Q} \cdot \boldsymbol{r}_{d \boldsymbol{r}}\right|^{2}$
\Rightarrow explains similarities in angular distributions provides the idea for the ratio method...

Ratio method

$$
d \sigma_{\mathrm{bu}} / d \sigma_{\mathrm{el}}=\left|F_{E 0}(\boldsymbol{Q})\right|^{2} /\left|F_{00}(\boldsymbol{Q})\right|^{2}
$$

- independent of reaction mechanism not affected by $V_{P T}$; i.e. the same for all targets
- probes only projectile structure

Test this using a dynamical reaction model,

- without adiabatic approximation
- including $V_{\mathrm{n} T}$

Ratio method

$$
d \sigma_{\mathrm{bu}} / d \sigma_{\mathrm{el}}=\left|F_{E 0}(\boldsymbol{Q})\right|^{2} /\left|F_{00}(\boldsymbol{Q})\right|^{2}
$$

- independent of reaction mechanism not affected by $V_{P T}$; i.e. the same for all targets
- probes only projectile structure

Test this using a dynamical reaction model,

- without adiabatic approximation
- including $V_{\mathrm{n} T}$

Alternative :

$$
\begin{aligned}
d \sigma_{\mathrm{bu}} / d \sigma_{\mathrm{sum}} & =\left|F_{E 0}\right|^{2} \\
& =\sum_{l j m} \mid \int \Phi_{l j m}(E) \Phi_{0} e^{\left.i \boldsymbol{Q} \cdot \boldsymbol{r}_{d r}\right|^{2}} \\
\text { with } \frac{d \sigma_{\mathrm{sum}}}{d \Omega} & =\frac{d \sigma_{\mathrm{el}}}{d \Omega}+\frac{d \sigma_{\mathrm{inel}}}{d \Omega}+\int \frac{d \sigma_{\mathrm{bu}}}{d E d \Omega} d E
\end{aligned}
$$

Testing with dynamical model of reaction

${ }^{11} \mathrm{Be}+\mathrm{Pb}$ @ 69AMeV

[P.C., Johnson, Nunes, PLB 705, 112 (2011) and PRC 88, 044602 (2013)]

- removes most of the angular dependence
- REB predicts ratio $=\left|F_{E 0}\right|^{2}$ confirmed by our calculations
\Rightarrow probe structure with little dependence on reaction

${ }^{11} \mathrm{Be}+\mathrm{C} @ 67 \mathrm{AMeV}$

Same result on C target (i.e. nuclear dominated)

Very different $d \sigma_{\text {el }} / d \Omega$ and $d \sigma_{\text {bu }} / d \Omega$ but same ratio \Rightarrow independent of reaction mechanism

(In)sensitivity to $V_{P T}$

Similar for Coulomb and nuclear dominated collisions
\Rightarrow independent of the reaction mechanism
\Rightarrow probes only projectile structure

Sensitivity to projectile description

Sensitivity to
binding energy
bound-state orbital

- Sensitive to both binding energy and orbital in both shape and magnitude
- Works better for loosely-bound projectiles (adiabatic approximation)

Sensitivity to radial wave function

Calculations performed with different initial radial wave functions

- Smaller sensitivity than binding energy and partial wave
- At forward angles, scales with ANC
- At larger angles, probes the internal part of the wave function

Valid also at low energy

 ${ }^{11} \mathrm{Be}+\mathrm{C}, \mathrm{Ca}, \mathrm{Pb} @ 20 A M e V$
[Colomer, P.C., Nunes, Johnson, PRC 93, 054621 (2016)]
\Rightarrow works also at low energy (HIE-Isolde, Re12@FRIB,...)

Extension to charged cases

What happens when p instead of n ?
Tests performed for ${ }^{8} \mathrm{~B} \equiv{ }^{7} \mathrm{Be}+\mathrm{p}(p 3 / 2) @ 44 \mathrm{AMeV}$ on C

Similar result as for c-n structure even if $V_{\mathrm{p} T}$ includes Coulomb

Extension to two-neutron haloes

Test on ${ }^{11} \mathrm{Li}+\mathrm{Pb} @ 70 A \mathrm{MeV}$
[Pinilla, Descouvemont, Baye, PRC 85, 054610 (2012)]

calculations by E. C. Pinilla

- Similar angular distributions for elastic scattering and breakup
- Ratio is smooth
- Need to extend REB to three-body projectiles

Experimental hopes

Scattering and breakup of ${ }^{11} \mathrm{Li}$ on Pb measured at TRIUMF

The breakup probability
$P_{\mathrm{bu}}(\theta)=\frac{d \sigma_{\mathrm{bu}} / d \Omega}{d \sigma_{\mathrm{el}} / d \Omega+d \sigma_{\text {bu }} / d \Omega}$
follows a smooth curve, as expected by ratio method
Excellent agreement with precise calculations
\Rightarrow ratio could be extended to
Borromean nuclei
[Fernàndez-Garcìa et al. PRL 110, 142701 (2013)]

Summary and prospect

- Halo nuclei exhibit a strongly clusterised structure : core + halo
- Studied mostly through reactions
- elastic scattering
- breakup
- Mechanism of reactions with halo nuclei understood but there remain uncertainties : optical potential choice
- Angular distributions similar for elastic scattering and breakup
\Rightarrow ratio removes dependence on reaction mechanism
\Rightarrow probes structure in more detail than other observables : see [P.C., Johnson, Nunes, PLB 705, 112 (2011)
and PRC 88, 044602 (2013)]
- Can be used at low energy (20 AMeV) and for proton haloes
- Can it be extended to Borromean nuclei ?
- Can it be used experimentally ?

Thanks to my collaborators

Filomena Nunes
Daniel Baye
Edna Pinilla
Frederic Colomer
Mahir Hussein

Ron Johnson

ULB

Universidade

Role of $V_{\mathrm{n} T}$

REB neglects $V_{\mathrm{n} T}$, it shifts slightly the angular distributions
[R. Johnson et al. PRL 79, 2771 (97)]

\Rightarrow responsible for the residual oscillations in the ratio

Role of $V_{\mathrm{n} T}$

Same conclusion on C

Oscillations at 2-4 due to $V_{\mathrm{n} T}$
$V_{\mathrm{n} T}$ known \Rightarrow well under control

