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Overview

Deformed	nuclei	(even-even	nuclei)
• Ground-state	rotational	band

– NLO	spectra	and B(E2)	values
• Vibrations

– LO	spectra	and	B(E2)	values
Spherical	nuclei	(even-even	nucleus	and	odd-mass	neighbor)
• Power	counting	from	data
• E2	properties

– Phonon-annihilating	B(E2)	values	
– LO	relations	between	observables

• M1	properties
– Static	M1	moments	and	phonon-conserving	transitions
– Phonon-annihilating	B(M1)	values
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êr v±1 ⌘ ⌥
r

1

2

⇣
✓̇ ± i�̇ sin ✓

⌘
(4)

v±1 ! e±i�̃v±1 (5)

C0 =
3

⇠
(6)

Q̂NLO = qêr · E� qd1
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Relevant	energy	scales	in	even-even	nuclei
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Q̂NLO = qêr · E� qd1
4

⇣
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The	orientation	angles				and					used	as	
degrees	of	freedom	via	the	building	blocks

Under	an	SO(3)	rotation

Quantizing	the	Legendre	transformation	of	
the	most	simple	rotationally-invariant	
Lagrangian yields

Ground-state	rotational	band
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êr v±1 ⌘ ⌥
r

1

2

⇣
✓̇ ± i�̇ sin ✓

⌘
(4)

v±1 ! e±i�̃v±1 (5)

I⇡ I ⇡ (6)

E(4+)

E(2+)

E(4+)

E(2+)
⇡ 2

E(4+)

E(2+)
⇡ 10

3
(7)

B(E2; I⇡i ! I⇡g )exp ⌧ B(E2; I⇡i ! I⇡g )BH (8)

B(E2; 2-N ! 1-N) = 2B(E2; 1-N ! 0-N) N (9)

Q(I⇡) = 0 (10)

✓ � ĤLO =
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h�ĤNLOi
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For	a	rigid	rotor	it	is	expected	that
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LO	and	NLO	LECs	compared	against	their	
naive	estimates

Higher-order	corrections	yield	a	Hamiltonian	
equivalent	to	that	of	the	variable	moment	of	
inertia	model*.	The	NLO	Hamiltonian

It	is	naively	expected	that

At	the	breakdown	scale

Thus

*Mariscotti,	et	al.;	Phys.	Rev.	178,	1864	(1969)

Power	counting	and	NLO	corrections
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NLO	LEC	for	B(E2)	values	compared	
against its	naive estimate

Coupling	between	the	building blocks	and	an	
electric	field	yield	the	E2	operator

The	NLO	B(E2)	values	for	decays	within	the	
ground-state	band	are

where

It	is	naively	expected	that

NLO	B(E2)	values	for	decays	within	the	ground-state	band
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hĤLOi

⇠ C2

C3
0

I2b ⇠
✓
⇠

!

◆2

I2b ⇠ 1 =) Ib ⇠

s
C3

0

C2
⇠ !

⇠

(13)

B(E2)NLO = Q2
0

⇣
C

If0
Ii020

⌘2

1 +

b

a
Ii(Ii + 1)

�
Ii If = Ii � 2

b

a
⇠

✓
⇠

!

◆2

Q2 ⌘
B(E2, I⇡i ! I⇡f )NLO

⇣
C

If0
Ii020

⌘2

(14)

�B(E2)LO ⇠
✓
⇠

!

◆2

I2i �B(E2)NLO ⇠
✓
⇠

!

◆4

I4i

�B(E2)LO = ↵LO

✓
⇠

!

◆2

I2i �B(E2)NLO = ↵NLO

✓
⇠

!

◆4

I4i �2

(15)

d†µ dµ µ = 0,±1,±2
⇥
dµ, d

†
⌫

⇤
= �µ⌫ (16)
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E2	transition	moments	given	by

Decays	within	the	ground-state	band	of	well-deformed	nuclei
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The	LO	description	of	decays	within	the	
ground-state	band	agrees	with	experimental	
data	below	the	breakdown	spin

Baglin; Nucl.	Data	Sheets	111,	1807	(2010)Baglin;	Nucl.	Data	Sheets	109,	1103	(2008)



Decays	within	the	ground-state	band	of	transitional	nuclei

E2	transition	moments	given	by
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NLO	corrections	are	required	to	describe	
decays	within	the	ground-state	band	below	
the	breakdown	spin

Zamfir et	al.; Phys.	Rev.	C	60,	054312	(1999)Krücken et	al.;	Phys.	Rev.	Lett.	88,	232501	(2002)



The	vibration	are	described	in	terms	of	a	
quadrupole	field.	The	building	blocks	are

Under	SO(3)	rotations

The	NLO	Hamiltonian	and	spectrum	are

Coupling	between	rotations	and	vibrations	in	deformed	nuclei
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Î2 � p̂2�

⌘

ENLO(n0, n2, I,K) = !0n0 +
!2

2

✓
2n2 +

K

2

◆
+

I(I + 1)�K2

2C0

p̂0 = �i@ 
0

p̂2 = �i@ 
2

p̂� = �i@�

n0 = 0, n2 = 0, K = 0 n0 = 0, n2 = 0, K = 2 n0 = 1, n2 = 0, K = 0 � �

⇤ ⇠ 2!
(28)

PRELIMINARY

4

State µ EFT
2+
1

0.79 (2) 0.79 (24)
2+
2

0.71 (10) 0.79 (49)
4+
1

1.8 (4) 1.93 (49)

Nucleus i ! f B(E2)
exp

B(E2)
EFT

108Pd 2+
1

! 0+
1

50.67 (1.34) 35 (12)
0+
2

! 2+
1

72.82 (5.03) 70 (23)
2+
2

! 2+
1

74.84 (8.05) 70 (23)
4+
1

! 2+
1

53.36 (5.03) 70 (23)
109Ag 3

2

�
1

! 1

2

�
1

41.61 (41.61) 35 (12)
5

2

�
1

! 1

2

�
1

42.62 (6.38) 35 (12)
1

2

�
2

! 3

2

�
1

28 (23)
1

2

�
2

! 5

2

�
1

42 (23)
3

2

�
2

! 3

2

�
1

50.67 (24.83) 49 (23)
3

2

�
2

! 5

2

�
1

21 (23)
5

2

�
2

! 3

2

�
1

8.39 (4.03) 14 (23)
5

2

�
2

! 5

2

�
1

10.40 (7.38) 55 (23)
7

2

�
1

! 3

2

�
1

62 (23)
7

2

�
1

! 5

2

�
1

7 (23)
9

2

�
1

! 5

2

�
1

69 (23)

 0 !  0  ±2 ! e±i2�̃ ±2 (27)

 0 = ⇣ +  0  ±2 =  2e
±i2�
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theory.

TABLE IV. Same as Table III but for 166Er. Experimental
values are taken from [73].

i ! f B(E2)exp B(E2)ET B(E2)BH

2+g ! 0+g 1.175(27) 1.175a 1.175
4+g ! 2+g 1.718(61) 1.679(24) 1.680
6+g ! 4+g 2.037(110) 1.849(60) 1.845
8+g ! 6+g 2.054(77) 1.935(112) 1.939
2+� ! 0+g 0.0285(12) 0.0370(93) 0.1205
2+� ! 2+g 0.0529(33) 0.0529a 0.1721
2+� ! 4+g 0.0043(2) 0.0026(7) 0.0086
2+� ! 0+g 0.0036(4) 0.0036a 0.0324
2+� ! 2+g 0.0051(13) 0.0463
2+� ! 4+g 0.2113(325) 0.0093(23) 0.0834

a
Values employed to adjust the LECs of the e↵ective theory.

Let us also attempt to describe a non-rigid rotor. The
region around 152Sm has been well studied [14, 15, 83],
and absolute B(E2) values for some inter-band transi-
tions in 154Sm were measured recently [84]. For 154Sm,
the LECs related to inter-band transitions are C

�

⇡
0.092 keV�1/2 (determined from the 2+

�

! 2+
g

transi-

tion) and C
�

⇡ 0.181 keV�1/2. Both values are natural
in size when compared to ⇠�1/2 ⇡ 0.110 keV�1/2. Ta-
ble V shows our LO results for this nucleus. The theo-
retical uncertainties are computed as discussed for 168Er.
We also show theoretical results of the confined � soft
(CBS) model [85], as an example that a particular model
can approximately account for the magnitude of some of
the transitions between the � band and the ground-state
band.

TABLE V. Same as Table III but for 154Sm. Theoretical
results from the confined � soft (CBS) model [85], taken from
Ref. [84], are also included. Experimental values are taken
from [80] and [84] for intra-band and inter-band transitions,
respectively.

i ! f B(E2)exp B(E2)ET B(E2)CBS B(E2)BH

2+g ! 0+g 0.863(5) 0.863a 0.853 0.863
4+g ! 2+g 1.201(29) 1.233(9) 1.231 1.234
6+g ! 4+g 1.417(39) 1.358(23) 1.378 1.355
8+g ! 6+g 1.564(83) 1.421(43) 1.471 1.424
2+� ! 0+g 0.0093(10) 0.0110(28) 0.0492
2+� ! 2+g 0.0157(15) 0.0157a 0.0703
2+� ! 4+g 0.0018(2) 0.0008(2) 0.0050
2+� ! 0+g 0.0016(2) 0.0025(6) 0.0024 0.0319
2+� ! 2+g 0.0035(4) 0.0035a 0.0069 0.0456
2+� ! 4+g 0.0065(7) 0.0063(16) 0.0348 0.0821

a
Values employed to adjust the LECs of the e↵ective theory.

We note that the ratio C
�

/C
�

, while usually natural in
size, fulfills C

�

/C
�

> 1 for the nuclei we just considered.
As the LECs C

�

and C
�

enter quadratically into B(E2)
transition strengths, the transitions from the � band to

the ground-state band are considerably weaker than the
transitions from the � band to the ground-state band.
The most important result of this paper is that the

e↵ective theory, with its model-independent approach to
the collective Hamiltonian and its corresponding tran-
sition operators, suggests a step toward the solution of
the long-standing problem posed by the faint inter-band
transitions. The consistent description of Hamiltonian
and currents shows that the observed strengths of inter-
band transitions can be described within the e↵ective
theory using LECs of natural size. As a consequence,
the strengths of the interband E2 transitions are also
natural in size. From this perspective it seems adequate
to keep referring to the 0+2 rotational band as the � band.
The e↵ective theory predicts the strength of inter-band
transitions once a single transition determines a LEC of
the Hamiltonian.
Let us finally also comment on NLO corrections to

inter-band transitions. These corrections are beyond the
scope of the present paper. Recently, Kulp et al. [86]
precisely measured ratios of transitions intensities be-
tween the � band and the ground-state band in 166Er.
They confirmed the beyond-leading-order predictions by
Mikhailov [63] to a high level of accuracy.

VII. DISCUSSION

The geometric collective models approach low-lying ex-
citations in deformed nuclei as quantized surface oscilla-
tions of a liquid drop. In contrast, the e↵ective theory
for deformed nuclei assumes symmetry properties (such
as rotational invariance), the emergent breaking of rota-
tional symmetry (and the ensuing separation of scales),
and the existence of a breakdown scale. It then builds
the most general Hamiltonian (and currents) consistent
with these assumptions and orders them in magnitude
based on the power counting. Not surprisingly, the ef-
fective theory – particularly beyond leading order – has
more parameters than the traditional models. The ge-
ometrical models quantitatively predict several aspects
of deformed nuclei, e.g. rotational bands with similar-
sized rotational constants on top of intrinsic vibrations
together with strong in-band transitions. The e↵ective
theory obtains these results in leading and subleading
order.
Other aspects, such as the small variation of rotational

constants with the quantum numbers of the band heads,
or the magnitude of inter-band transitions are not de-
scribed quantitatively correct by the tradtional models.
In contrast, the e↵ective theory also captures these finer
details, as shown for the rotational constants in Ref. [29]
and for the inter-band transitions in this work. This sug-
gests that the assumptions made by the models are cor-
rect only to a certain order. The e↵ective theory’s ca-
pability in accounting also for the finer details suggest
that its underlying assumptions are sound. The e↵ec-
tive theory delivers increased precision (with consistent

LO	B(E2)	values	for	interband
decays	in	154Sm	[e2b2].	

Coupling	between	the	building blocks	and	an	
electric	field	yield	the	E2	operator
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The complete Hamiltonian at NLO can be diagonalized
as
⇣
ĤLO + ĤNLO

⌘
|n0n2IMKi =


!0

✓
n0 +

1

2

◆
(90)

+
!2

2

✓
2n2 +

K

2
+ 1

◆
+

I(I + 1)�K2

2C0

�
|n0n2IMKi.

Thus, at this order, the spectrum consists of rotational
bands with rotational constant 1/(2C0) on top of har-
monic vibrations. The vibrational quanta determine the
band head, and the ground-state band has no vibrational
quanta excited. Because 0  �  ⇡, the wave function
in � must exhibit periodic boundary conditions at the
domain boundaries. This limits K to even values. His-
torically, the band head with (n0 = 1, n2 = 0,K = 0),
and the band head with (n0 = 0, n2 = 0,K = 2) deter-
mine the “� band” and the “� band” respectively. In
what follows, we continue to use these labels.

The NNLO correction to the Hamiltonian is

HNNLO = � 1

2C2
0

⇣
C

�

 0p
2
⌦�

+ C
�

 2p
T

⌦�

�̂p⌦�

⌘
. (91)

Here,

�̂ ⌘

cos 2� sin 2�
sin 2� � cos 2�

�
(92)

acts on vectors in the tangent plane. The operator
ĤNNLO is o↵-diagonal in the eigenstates of the NLO
Hamiltonian. Thus, it is only e↵ective in second-order
perturbation theory, i.e. at order N3LO. At that order,
corrections to the rotational constant (or the e↵ective
moment of inertia) linear in the number of excited quanta
are introduced [29]. These corrections arise due to omit-
ted physics at the breakdown scale ⇤ ⇠ 3 MeV, where
pair-breaking e↵ects need to be taken into account [30].
Thus, deviations from the harmonic behavior of the band
heads is expected to scale as !/⇤ ⇡ 1/3 for nuclei in the
rare-earth and actinide regions. In the following Sec-
tion, we will determine the LECs C

�

and C
�

by fit to
inter-band transitions. In the long run, it would be in-
teresting to compute LECs from more microscopic meth-
ods [46, 47].

VI. INTER-BAND TRANSITIONS

In this Section, we couple electromagnetic fields to the
Hamiltonian, and focus on the inter-band transitions.
These transitions are much fainter than the strong intra-
band transitions discussed in the Sect. IV. The transi-
tions from the � band to the ground-state band are not
understood very well (see Ref. [11] for a review), because
the traditional models overpredict them by up to an or-
der of magnitude. Furthermore, these transitions vary
by about two orders of magnitude in well-deformed and
transitional nuclei [12]. Below we will see that the tran-
sitions pose no challenge to the e↵ective theory. For the

LO description of these transitions, we only need to gauge
the NNLO Hamiltonian.

A. Transition operators

The NNLO Hamiltonian of the previous section can be
coupled to an electromagnetic field employing the gaug-
ing

p̂⌦�

! p̂⌦�

� qA⌦ = �ir⌦�

� qA⌦ . (93)

This is equivalent to

J ! J� qe
r

⇥A⌦ , (94)

and in full analogy to Eq. (37).
Thus, the angles ✓, �, and � are gauged. Assuming

that the vibrational degrees of freedom  0 and  2 also
carry a charge, we could also couple these to the radial
component A · e

r

to obtain a rotationally invariant and
gauge-invariant Hamiltonian. As discussed below, the
corresponding terms do not yield independent contribu-
tions for the intra-band transitions considered in this pa-
per, and they are therefore neglected.
The gauging of the NNLO contribution (91) to the

Hamiltonian

Ĥ
(A)
NNLO =

iq

2C0

C
�

C0
 0 (A ·r⌦�

+r⌦�

·A)

+
iq

2C0

C
�

C0
 2

⇣
AT �̂r⌦�

+rT

⌦�

�̂A
⌘

(95)

induces LO inter-band transitions. As the inter-band
transitions originate from a small correction to the
Hamiltonian, they are expected to be an order of mag-
nitude weaker (in the power counting) than the intra-
band transitions. Gauging of the fields  0 and  2 would
add terms q0Ar

p̂0 and q2Ar

p̂2 to the Hamiltonian. Here
A

r

= A ·e
r

. These operators do not yield transition ma-
trix elements that di↵er from those of the operators in
the Hamiltonian (95). They are therefor neglected.
Following Eq. (55) we compute the transition strength

as

B(E�, i ! f) =
1

2l
i

+ 1
|hf ||M (E�)||ii|2 . (96)

where M̂ (E�) ⌘ Ĥ(A(�))/(wA), w ⌘ [I
f

(I
f

+1)�I
i

(I
i

+
1)+K2

i

]/2C0, and k is the energy (or momentum) of the
photon involved in the transition.
The LO inter-band B(E2) values for transitions from

the � band to the ground band are

B(E2, i
�

! f
g

) =
C2

�

2C2
0!0

q2

60

⇣
C

If0
Ii020

⌘2
, (97)

while LO B(E2) values for transitions from the � band
to the ground band are

B(E2, i
�

! f
g

) =
3C2

�

2C2
0!2

q2

60

⇣
C

If0
Ii22�2

⌘2
. (98)
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B. Power counting and Hamiltonian at NNLO

In addition to the power counting estimates (10) we
have [28]

!0 ⇠ !2 ⇠ �̇ ⇠ !  ̇0 ⇠  ̇2 ⇠ !1/2

⇣ ⇠ ⇠�1/2  0 ⇠  2 ⇠ !�1/2.
(73)

For an understanding of this scaling we recall that the
angles ✓, � and � are dimensionless, and that a time
derivative on these degrees of freedom must scale as the
excitation energy of the motion they generate. The scal-

ing of  
i

, i = 0, 2, is such that  ̇
i

2 ⇠ !. The expectation
value ⇣ is associated with the emergent symmetry break-
ing and must scale as ⇠�1/2.

The Lagrangian of this e↵ective theory is LLO+LNLO+
LNNLO where the leading-order Lagrangian

LLO =
1

2
 ̇2
0 +  ̇2

2 + 4�̇2 2
2 �

!2
0

2
 2
0 �

!2
2

4
 2
2 (74)

describes vibrations at the high-energy scale !, the NLO
correction

LNLO =
C0

2

⇣
✓̇2 + �̇2 sin2 ✓

⌘
+ 4 2

2 �̇�̇ cos ✓ (75)

couples rotations at the low-energy scale ⇠ to vibrations
via the � degree of freedom, and the NNLO correction

LNNLO =
C
�

2
 0

⇣
✓̇2 + �̇2 sin2 ✓

⌘

+
C
�

2
 2

⇣
✓̇2 � �̇2 sin2 ✓

⌘
cos 2�

+ C
�

 2✓̇�̇ sin 2� sin ✓,

(76)

is treated as a perturbation that scales as ⇠(⇠/!)1/2. Ac-
cording to the power counting 73, this implies

C
�

⇠ C
�

⇠ ⇠�1/2. (77)

Note that � is a cyclic variable of the LO and NLO La-
grangians. Thus, at these orders, the projection of the
angular momentum J onto the intrinsic symmetry axis
p
�

, is a conserved quantity in addition to the total angu-
lar momentum (70).

A Legendre transformation of the Lagrangian yields
the Hamiltonian HLO +HNLO +HNNLO. Here

HLO =
p20
2

+
!2
0

2
 2
0 +

p22
4

+
1

4 2
2

⇣p
�

2

⌘2
+
!2
2

4
 2
2 (78)

is the Hamiltonian of a harmonic oscillator with fre-
quency !0 coupled to a two-dimensional harmonic os-
cillator with frequency !2. The quantization is standard

p̂0 = �i@
 0 p̂2 = �i@

 2 p̂
�

= �i@
�

. (79)

We denote the eigenstates of the LO Hamiltonian as
|n0n2K/2i, with integer n0 and n2 and even K. Here n0,

n2 and K/2 are the number of quanta of the modes  0,
 2, and �, respectively. These states can be written as
|n0i|n2i|K/2i, where |n0i are the states of the harmonic
oscillator, and h 2|n2i are the radial wave functions of
the two-dimensional harmonic oscillator.
The NLO correction

HNLO =
1

2C0
p2
⌦� =

1

2C0

�
J2 � p2

�

�
(80)

is the Hamiltonian of a symmetric top [82]. Here, the
momentum in the tangential plane is

p⌦� = e
✓

p
✓

+ e
�

p
��

, (81)

with

p
��

⌘ p
�

� p
�

cos ✓

sin ✓
. (82)

We also have

J = e
r

⇥ p⌦� + e
r

p
�

. (83)

This form of the angular momentum agrees with the in-
tuition. In particular, rotations around the symmetry
axis e

r

yield a contribution to the angular momentum in
the direction of this axis.
The quantization

p̂⌦� = �ie
✓

@
✓

� ie
�

@
�

� @
�

cos ✓

sin ✓

= �e
r

⇥ Ĵ
(84)

is standard. In what follows, we denote the di↵erential
operator corresponding to the momentum operator p̂⌦�

also as

� ir⌦� ⌘ p⌦� . (85)

The Hamiltonian eigenvalue problem becomes

ĤNLO|IMKi = 1

2C0

⇥
I(I + 1)�K2

⇤
|IMKi. (86)

Here, we continued to denote the eigenvalues of the total
angular momentum by the quantum number I. The wave
functions are linear combinations of Wigner D functions,
consistent with the positive R parity of the system, i.e.

h⌦�|IMKi = N
⇥
DI

MK

(⌦, �) + (�1)IDI

M�K

(⌦, �)
⇤
.

(87)
Here N is a normalization factor. For K = 0, the wave
function cannot take odd I values due to the R parity.
Thus, for even I the wave function takes the form

h⌦�|IM0i =
r

2I + 1

4⇡2
DI

M0(⌦, �) =
(�1)mp

⇡
Y
I�M

(⌦).

(88)
The Wigner D-functions DI

MK

(⌦�) fulfill the rela-
tions [58]

Ĵ
z

DJ

MK

(⌦�) = �MDI

MK

(⌦�)

Ĵ
z

0DJ

MK

(⌦�) = �KDI

MK

(⌦�)

Ĵ2DJ

MK

(⌦�) = I(I + 1)DI

MK

(⌦�).

(89)

a) Values	employed	to	fix	the	LECs
b) Experimental	values	from	*

*Reich;	Nuclear Data	Sheets	110,	2257	(2009)
*Möller et	al.;	Phys.	Rev.	C	86,	031305	(2012)



Spherical	nuclei
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Relevant	energy	scales	in	even-even	nuclei
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êr v±1 ⌘ ⌥
r

1

2

⇣
✓̇ ± i�̇ sin ✓

⌘
(4)

v±1 ! e±i�̃v±1 (5)

C0 =
3

⇠
(6)

Q̂NLO = qêr · E� qd1
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Relevant	energy	scales	in	odd-mass	spherical	nuclei	with	½-ground	states
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⌘
(7)

I⇡ I ⇡ (8)

E(4+)

E(2+)

E(4+)

E(2+)
⇡ 2

E(4+)

E(2+)
⇡ 10

3
(9)

B(E2; I⇡i ! I⇡g )exp ⌧ B(E2; I⇡i ! I⇡g )BH (10)

B(E2; 2-N ! 1-N) = 2B(E2; 1-N ! 0-N) N (11)

1

⇠ ! ⇤ (1)

⇠ ⇠ 100keV ! ⇠ 1000keV ! ⇠ 500keV ⇤ ⇠ 2000keV ⇤ ⇠ 1500keV
(2)

⇠

!
⌧ 1

!

⇤
⌧ 1

⇠

!
⇠ 1

10

!

⇤
⇠ 1

2

!

⇤
⇠ 1

3
(3)
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where

Power	counting	and	Hamiltonian

The	Hamiltonian	is	constructed	in	terms	of	
boson	quadrupole	operators

and	fermion	operators

The	later	create	and	annihilate	a	fermion	in	a
orbital

The	suggested	power	counting	based	on	the	
energy	scales	spherical	nuclei	leads	to	a	NLO
Hamiltonian	with	the	following	contributions

2

that govern the collective vibrations of an even-
even nucleus. This EFT is based on the usual
linear Wigner-Weyl representation of rotational
symmetry and can be contrasted to an EFT
for deformed nuclei, which is based on the non-
linear Nambu-Goldstone realization of the rota-
tional symmetry [31]. Based on a power count-
ing we systematically construct the Hamilto-
nian and electromagnetic operators. Another
interesting aspect of this EFT approach is the
simultaneous description of the even-even and
neighboring odd-mass nuclei; consequently, ob-
servables in the even-even nucleus are related
to observables in the odd-mass system. These
relations can be confronted with experimental
data. In this work, we will compute electric
quadrupole (E2) and magnetic dipole (M1) ob-
servables for odd-mass isotopes of rhodium and
silver. This is also interesting with view on re-
cent g factor measurements in this region of
the nuclear chart [48, 49]. The paper is or-
ganized as follows. In Section II, we present
the EFT framework within which the even-
even/odd-mass nuclei will be described, estab-
lish a power counting and describe energy spec-
tra at next-to-next-to-leading order (NNLO).
Sections III and IV are dedicated to the study
of moments and transitions of the E2 and M1
operators, respectively. In Section V we discuss
the possible extension of the EFT to the more
complicated case posed by cadmium isotopes.
Finally, in Section VI we present our summary.

II. ODD-MASS VIBRATIONAL NUCLEI

Certain even-even nuclei (such as isotopes of
Cd, Ru, and Te) exhibit low-energy states that
resemble those of a five-dimensional quadrupole
oscillator. In these nuclei, the vibrational fre-
quency ! ⇡ 0.6 MeV is the energy scale of in-
terest, and the picture of a quadrupole vibrator
breaks down at an energy ⇤ ⇡ 2-3 MeV, i.e.
around the three-phonon level. The breakdown
scale ⇤ is associated with neglected microscopic
(fermionic) degrees of freedom and is of similar
size as the pairing gap. Thus, ! ⌧ ⇤ holds,
and this separation of scale has been exploited

in Ref. [36] to construct an EFT for nuclear vi-
brations.

The spectra of certain odd-mass neighbors
of vibrational nuclei are relatively simple and
suggest that these result from coupling a j⇡ =
1/2� fermion to the even-even nucleus. Exam-
ples we consider in this paper are 99,101,103Rh
(Z = 45) and 105,107,109,111Ag (Z = 47) as
a proton coupled to 98,100,102Ru (Z = 44)
and 104,106,108,110Pd (Z = 46), respectively, or
107,109,111Ag as a proton-hole in 108,110,112Cd
(Z = 48). These cases are particularly simple
because one deals with a j⇡ = 1/2� degree of
freedom. We note here that the odd-mass nuclei
considered in this work also exhibit very low-
lying (100 keV or less) states with positive par-
ity. As a single fermion cannot undergo parity-
changing transitions, the positive-parity states
can be neglected in the description of low-lying
negative-parity states in the odd-mass nuclei.

Could one also attempt to describe, for in-
stance, 108,110,112Cd in terms of two protons
added to 106,108,110Pd, respectively? In such
an EFT approach, the low-lying positive-parity
states of 107,109,111Ag would also need to enter
the description. The calculation would be non-
perturbative (because of the near degeneracy of
states with positive and negative parities in the
odd-mass nucleus), and a significant number of
fermionic two-body-matrix elements would en-
ter as low energy constants (LECs). It is thus
unclear whether such an EFT approach would
be profitable.

A. Hamiltonian

Before we turn to the odd-mass nuclei, we
briefly review some aspects of the EFT for nu-
clear vibrations in even-even nuclei [36]. The
relevant degrees of freedom are quadrupole op-
erators d†µ and dµ with µ = �2,�1, ..., 2 that
create and annihilate a phonon, respectively.
They fulfill the usual boson commutation rela-
tions

⇥
dµ, d

†
⌫

⇤
= �µ⌫ . (1)

3

We note that d†µ and

d̃µ = (�1)µd�µ (2)

are spherical tensors of rank two. The angular
momentum operator for the quadrupole degrees
of freedom is the vector

Ĵ =
p
10

⇣
d† ⌦ d̃

⌘(1)

. (3)

We recall that the coupling of the spherical ten-
sors M(m) and N (n) of ranks m and n, respec-
tively, to a spherical tensor K(k) of rank k is
denoted as

K(k) =
⇣
M(m) ⌦N (n)

⌘(k)
, (4)

and the corresponding components

K(k)
 =

X

µ⌫

Ck
mµn⌫M(m)

µ N (n)
⌫ (5)

are given in terms of the Clebsch-Gordan coe�-
cients Ck

mµn⌫ that couple the angular momenta
m and n to spin k [50]. Similarly, the scalar
product of two spherical tensors M(I) and N (I)

of the same rank I is [50]

M(I) · N (I) =
p
2I + 1

⇣
M(I) ⌦N (I)

⌘(0)

(6)

The boson Hamiltonian at next-to-leading or-
der (NLO) in the EFT for vibrational nuclei is

Ĥb = !1N̂ + gN N̂2 + gv⇤̂
2 + gJ Ĵ

2. (7)

Here,

N̂ ⌘ d† · d̃ (8)

and

⇤̂2 ⌘ � �
d† · d†�

⇣
d̃ · d̃

⌘
+ N̂2 � 3N̂ (9)

are the boson number operator and the second-
order Casimir operator, respectively. For more
details on the later operator and its eigenvalues
see, for example, Ref. [9]. The first term on the
right-hand side of Eq. (7) is of order !. This
leading order (LO) term is the Hamiltonian of

a five-dimensional harmonic oscillator. The re-
maining terms in the Hamiltonian (7) account
for finer details at order !3/⇤2. These cor-
rections introduce anharmonicities. The power
counting of the EFT is in powers of the small
parameter !/⇤. For details, we refer the reader
to Ref. [36].
The spin 1/2 fermion is described in terms of

fermion creation and annihilation operators a†⌫
and a⌫ respectively, that fulfill the usual anti-
commutation relations

�
aµ, a

†
⌫

 
= �µ⌫ . (10)

In most of this paper, ⌫ = �1/2, 1/2. The corre-
sponding angular momentum operator is

ĵ =
1p
2

�
a† ⌦ ã

�(1)
, (11)

and the fermion number operator is

n̂ ⌘ a† · ã. (12)

Here, we used the spherical rank-1/2 tensor ã
with components

ã⌫ ⌘ (�1)j+⌫a�⌫ . (13)

The fermion Hamiltonian

Ĥf = �Sn̂��n̂(n̂� 1) (14)

consists of a one-body term and a two-body
term. We note that the term n̂(n̂ � 1) is
the unique two-body interaction for spin-1/2
fermions restricted to a single j⇡ = 1/2+ shell.
We do not need to consider other Hamiltonian
terms such as ĵ2 / n̂(2� n̂) or n̂2 because these
are linear combinations of the terms already in-
cluded in the Hamiltonian (14).

The Hamiltonian (14) is not the Hamilto-
nian of free fermions but rather captures the
interactions between fermions and the ground
state of the vibrating core. Let us discuss the
energy scales S and �. For a particle (hole)
added to the even-even vibrator, S ⇡ 8 MeV
(S ⇡ �8 MeV) is of order of the separation
energy, while � ⇡ 2 MeV is of the order of a
paring gap. The attractive interaction between
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IV. M1 OBSERVABLES

The magnetic dipole (M1) operator is a
spherical tensor of rank one. In our EFT, the
simplest rank-one operator is

µ̂µ =µdĴµ + µaĵµ

+
⇣⇣

d† + d̃
⌘
⌦

⇣
µd1Ĵ+ µa1ĵ

⌘⌘(1)

µ
.
(52)

The first and second terms on the right-hand
side of Eq. (52) preserve the phonon number,
and enter in the LO calculation of static M1
moments and phonon-conserving M1 transition
strengths. The last two terms enter in the LO
calculation of phonon-changing M1 transition
strengths.

Experimental data show that the typical size
for the static M1 moment of the even-even 2+1
state is about one nuclear magneton µN . This
observation and the fact that in even-even nuclei

hI||Ĵ||Ii =
p

I(I + 1)(2I + 1), (53)

allow us to estimate the scale for the LEC µd as

µd ⇠ 1

5
µN . (54)

The Schmidt value for the magnetic moment
of a proton in a j⇡ = 1/2� orbital is µp ⇡
�0.26µN . In contrast to E2 phenomena, mag-
netic properties in vibrational nuclei are not col-
lective, and the contributions of the odd fermion
cannot be neglected. As will be shown in what
follows, the static M1 moment of the I = 1/2
ground state of the odd-mass nuclei calculated
from the operator (52) is µ(1/2) =

p
⇡/3µa.

Thus, we naively estimate the value of µa as

µa ⇠ µp. (55)

Static M1 moments for the ground state in
103Rh, 107Ag and 109Ag are consistent with this
estimate. It is important to realize that the
LEC µa is neither equal nor simply related to
the Schmidt value. In the EFT considered in
this work, we couple a fermion with j⇡ = 1/2�

(and not a free proton in a p wave) to a col-
lective state. We have no information about

any radial wave function of the coupled fermion,
and we have no operators to act on its spin and
its orbital angular momentum separately. The
coupling between the fermion and the core is
strong (as the separation energy S considerably
exceeds the energy scale ! of core excitations).
The result of the coupling is again a collec-
tive state, and renormalizations replace “bare”
quantities such as the proton’s magnetic mo-
ment by e↵ective couplings. It is useful to con-
trast the EFT for vibrations in odd-mass nuclei
with halo EFT [28–30, 68] for odd-mass nuclei.
In halo EFT, a nucleon is very weakly bound
to a core, and S ⌧ ! holds. The nucleon’s
Schmidt value is the leading contribution to the
total magnetic moment, and subleading correc-
tions are of size S/! ⌧ 1 [69, 70].

Let us now turn to the phonon-changing
terms in Eq. (52) and discuss the size of the
LECs µd1 and µa1. Due to the absence of
strong collective e↵ects in M1 observables, the
naive expectation is that transition matrix ele-
ments again are of single-particle size, i.e. sim-
ilar to µN or µp. Higher-order corrections
to the leading phonon-changing and phonon-
preserving terms of the M1 operator (52) en-
ter with increasing powers of boson or fermion
creation and annihilation operators. We expect
them to scale as " and neglect them in what
follows.

The M1 reduced transition probabilities and
static M1 moments are given by [9]

B(M1; i ! f) =
|hf ||µ̂||ii|2
2Ii + 1

(56)

and

µ(I) =

r
4⇡

3

CII
II10p
2I + 1

hI||µ̂||Ii, (57)

respectively.

A. Static moments and phonon-conserving
transition strengths

The LO static M1 moments of even-even and
odd-mass nuclei can be calculated from the re-

4

two nucleons (with isospin one) fail to bind the
pair in vacuum but yields a bound state with
energy � when coupled to the core. We note
that � ⇠ ⇤, as pairing e↵ects are one source
for the breakdown of the EFT in even-even nu-
clei.

Besides the breaking of a pair, there are other
e↵ects that lead to the breakdown of the EFT.
In the EFT presented in this work we consid-
ered the simplest case of a single orbital with
spin 1/2, and in the nuclei we describe this or-
bital has negative parity. A view on nuclear
data tables shows that there are many more
states in odd-mass nuclei than predictd by our
EFT. Additional negative-parity states appear
at about the two-phonon level, and their omis-
sion is therefore consistent with our breakdown
scale. Such states could presumably be included
by adding other negative-parity orbitals to our
EFT, but we did not attempt this. However,
positive parity states can be found at very low
energies. As the strong nuclear interaction pre-
serves parity, such orbitals cannot be coupled
to the negative-parity orbital we consider in our
EFT for a single nucleon added to the vibrating
core. Thus, the description of negative-parity
states below the breakdown scale is not a↵ected
by the omission of any other orbitals. We did
not attempt to develop an EFT for the positive-
parity states because the spin of the corre-
spondig orbitals is rather large for the nuclei we
consider. The coupling of such an orbital to the
vibrating core yields a large number of possible
fermion states, and it is not clear how to identify
such states unambiguously. It is clear that an
extension of the EFT to describe, for instance,
pair transfer between even-even vibrating nu-
clei would be considerably more complicated as
low-lying positive parity states would also need
to be included.

The interaction between boson and fermion
degrees of freedom is most interesting. Two-
body terms of the structure Ĵ · ĵ and N̂ n̂ couple
phonons to fermions. Here, the first term could
be referred to as a “Coriolis” interaction, be-
cause it couples the spin of the fermion to the
spin of the core. In addition to these interac-
tions there are three-body terms of the forms

N̂2n̂, Ĵ2n̂, and N̂ n̂(n̂ � 1). Here, the first two
three-body terms involve the annihilation and
creation of two phonons and are suppressed in
comparison to the three-body term involving
only one phonon. Thus, the leading-order inter-
actions between phonons and fermion degrees of
freedom are

Hb�f = gJj Ĵ · ĵ+ !2N̂ n̂+ !3N̂ n̂(n̂� 1). (15)

We note that the three-body term !3N̂ n̂(n̂�1)
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⇤
. (16)

This scaling is based on the relatively small en-
ergy di↵erence observed between the two di↵er-
ent levels that result from coupling a fermion
to the one-phonon state of the even-even nu-
cleus and consistent with the shift of the cen-
troid of these two levels in the odd-mass nu-
cleus. We note that the energy splitting and the
shift of the centroid is due to the first and sec-
ond terms in the interaction Hamiltonian (15),
respectively. Comparing these energies with
that of the one-phonon state in the even-even
neighbor, given by the matrix element of the
LO term in the boson Hamiltonian (7), leads to
the power counting proposed in Eq. (16). Thus,
one-fermion terms in the interaction Hamilto-
nian (15) scale as !2/⇤.

Putting everything together, and restricting
ourselves to a single fermion, we arrive at the
Hamiltonian

H = Hb +Hf +Hb�f

= �Sn̂+HLO +HNLO +HNNLO, (17)

with

HLO ⌘ !1N̂ , (18)
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and

HNNLO ⌘ gN N̂2 + gv⇤̂
2 + gJ Ĵ

2. (20)

While the term �Sn̂ in Eq. (17) sets the overall
binding with respect to the ground-state of the
vibrating core, it does not contain any spectro-
scopic information. We will therefore neglect
this term in what follows. The LO Hamilto-
nian (18) is that of a harmonic quadrupole vi-
brator, and energies are of the order !. Higher-
order contributions to the Hamiltonian are most
interesting. The NLO Hamiltonian (19) ac-
counts for e↵ects introduced by the phonon-
fermion couplings. We note that the size of
the boson-fermion interaction cannot be deter-
mined on theoretical grounds but must rather
be based on data. The empirical inspection of
spectra suggests that these phonon-fermion cou-
plings are a fraction of the scale !. We approxi-
mate this scale as order !2/⇤ and thereby avoid
the introduction of a new small parameter. Be-
cause of this perturbative coupling we can as-
sociate low-lying states in certain odd-mass nu-
clei with the spectra in the neighboring even-
even nuclei. The NNLO Hamiltonian (20) in-
volves phonon-phonon interactions that account
for anharmonicities in the even-even nucleus.
We remind the reader that these terms are of
order !3/⇤2 and have been discussed in detail
in Ref. [36].

Let us discuss the Hilbert space. The states
of the odd nucleus are products of the boson
quadrupole states and fermion states of the j =
1/2 orbital. As usual, the vacuum |0i fulfills

dµ|0i = 0 = a⌫ |0i. (21)

The boson states of the quadrupole vibrator
are created from the vacuum by the succes-
sive application of quadrupole creation opera-
tors. These states are denoted as

|N↵vJµi. (22)

Here N is the number of phonons, v is the se-
niority, J and µ are the angular momentum and
its projection onto the z-axis, respectively, while
↵ represents an additional quantum number.
This quantum number is only needed above the

two-phonon level and therefore not needed for
the low-energy physics we are interested in. We
will omit it in what follows. For details on the
construction of these states we refer the reader
to Ref. [9]. The single-fermion states are

| 12⌫i ⌘ a†⌫ |0i. (23)

Normalized states of the odd-mass nucleus with
total spin I and projection M are

|IM ;N↵vJ ; 1
2 i ⌘

�|N↵vJi ⌦ | 12 i
�(I)
M

=
X

µ⌫

CIM
Jµ 1

2

⌫ |N↵vJµi| 12⌫i. (24)

The Hamiltonian (17) is diagonal in the basis
states (24) with eigenvalues

E = ELO + ENLO + ENNLO, (25)

with

ELO = !1N, (26)

ENLO = !2Nn+
gJj
2


I(I + 1)� J(J + 1)� 3

4

�

(27)
and

ENNLO = gNN2+gvv(v+3)+gJJ(J+1). (28)

We remind the reader that we neglected the sep-
aration energy S, i.e., the ground-state ener-
gies of the even-even nucleus and of the odd-
mass nucleus are set to zero. Figure 1 shows a
schematic plot of the NLO energy spectrum (25)
up to the two-phonon level. States are labeled
by their spin and parity. Even-even states,
shown as long red lines, have integer spins
and positive parity. Odd-mass states, shown
as short blue lines, have half-integer spins and
the parity of the fermion’s orbital. (Odd-mass
states considered in what follows all have neg-
ative parities.) Energies are chosen in units of
!1, and the LECs !2 and gJj are small frac-
tions of this LEC. We see how the term propor-
tional to !2 shifts the energies while the term
proportional to gJj splits even-even states with
finite spins into doublets in the odd-mass neigh-
bor. The centroids from the shift are shown as
crosses in Fig. 1.
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We note that d†µ and

d̃µ = (�1)µd�µ (2)

are spherical tensors of rank two. The angular
momentum operator for the quadrupole degrees
of freedom is the vector

Ĵ =
p
10

⇣
d† ⌦ d̃

⌘(1)

. (3)

We recall that the coupling of the spherical ten-
sors M(m) and N (n) of ranks m and n, respec-
tively, to a spherical tensor K(k) of rank k is
denoted as

K(k) =
⇣
M(m) ⌦N (n)

⌘(k)
, (4)

and the corresponding components

K(k)
 =

X

µ⌫

Ck
mµn⌫M(m)

µ N (n)
⌫ (5)

are given in terms of the Clebsch-Gordan coe�-
cients Ck

mµn⌫ that couple the angular momenta
m and n to spin k [50]. Similarly, the scalar
product of two spherical tensors M(I) and N (I)

of the same rank I is [50]

M(I) · N (I) =
p
2I + 1

⇣
M(I) ⌦N (I)

⌘(0)

(6)

The boson Hamiltonian at next-to-leading or-
der (NLO) in the EFT for vibrational nuclei is

Ĥb = !1N̂ + gN N̂2 + gv⇤̂
2 + gJ Ĵ

2. (7)

Here,

N̂ ⌘ d† · d̃ (8)

and

⇤̂2 ⌘ � �
d† · d†�

⇣
d̃ · d̃

⌘
+ N̂2 � 3N̂ (9)

are the boson number operator and the second-
order Casimir operator, respectively. For more
details on the later operator and its eigenvalues
see, for example, Ref. [9]. The first term on the
right-hand side of Eq. (7) is of order !. This
leading order (LO) term is the Hamiltonian of

a five-dimensional harmonic oscillator. The re-
maining terms in the Hamiltonian (7) account
for finer details at order !3/⇤2. These cor-
rections introduce anharmonicities. The power
counting of the EFT is in powers of the small
parameter !/⇤. For details, we refer the reader
to Ref. [36].
The spin 1/2 fermion is described in terms of

fermion creation and annihilation operators a†⌫
and a⌫ respectively, that fulfill the usual anti-
commutation relations

�
aµ, a

†
⌫

 
= �µ⌫ . (10)

In most of this paper, ⌫ = �1/2, 1/2. The corre-
sponding angular momentum operator is

ĵ =
1p
2

�
a† ⌦ ã

�(1)
, (11)

and the fermion number operator is

n̂ ⌘ a† · ã. (12)

Here, we used the spherical rank-1/2 tensor ã
with components

ã⌫ ⌘ (�1)j+⌫a�⌫ . (13)

The fermion Hamiltonian

Ĥf = �Sn̂��n̂(n̂� 1) (14)

consists of a one-body term and a two-body
term. We note that the term n̂(n̂ � 1) is
the unique two-body interaction for spin-1/2
fermions restricted to a single j⇡ = 1/2+ shell.
We do not need to consider other Hamiltonian
terms such as ĵ2 / n̂(2� n̂) or n̂2 because these
are linear combinations of the terms already in-
cluded in the Hamiltonian (14).

The Hamiltonian (14) is not the Hamilto-
nian of free fermions but rather captures the
interactions between fermions and the ground
state of the vibrating core. Let us discuss the
energy scales S and �. For a particle (hole)
added to the even-even vibrator, S ⇡ 8 MeV
(S ⇡ �8 MeV) is of order of the separation
energy, while � ⇡ 2 MeV is of the order of a
paring gap. The attractive interaction between
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ĵ =
1p
2

�
a† ⌦ ã
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�
aµ, a

†
⌫

 
= �µ⌫ . (10)

In most of this paper, ⌫ = �1/2, 1/2. The corre-
sponding angular momentum operator is

ĵ =
1p
2

�
a† ⌦ ã

�(1)
, (11)

and the fermion number operator is

n̂ ⌘ a† · ã. (12)

Here, we used the spherical rank-1/2 tensor ã
with components

ã⌫ ⌘ (�1)j+⌫a�⌫ . (13)

The fermion Hamiltonian

Ĥf = �Sn̂��n̂(n̂� 1) (14)

consists of a one-body term and a two-body
term. We note that the term n̂(n̂ � 1) is
the unique two-body interaction for spin-1/2
fermions restricted to a single j⇡ = 1/2+ shell.
We do not need to consider other Hamiltonian
terms such as ĵ2 / n̂(2� n̂) or n̂2 because these
are linear combinations of the terms already in-
cluded in the Hamiltonian (14).

The Hamiltonian (14) is not the Hamilto-
nian of free fermions but rather captures the
interactions between fermions and the ground
state of the vibrating core. Let us discuss the
energy scales S and �. For a particle (hole)
added to the even-even vibrator, S ⇡ 8 MeV
(S ⇡ �8 MeV) is of order of the separation
energy, while � ⇡ 2 MeV is of the order of a
paring gap. The attractive interaction between
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B. Uncertainty quantification

EFTs provide us with the opportunity to
quantify theoretical uncertainties. While the
power counting allows one to estimate uncer-
tainties in EFTs, quantified uncertainties re-
sult from (testable) assumptions one makes
about the distribution of the LECs [40] in
form of priors. Employing Bayesian statistics
(and marginalizing) over unknown parameters
included in these priors yields degree-of-belief
(DOB) intervals with a statistical meaning. In
this section, we closely follow Ref. [36] and
chose log-normal priors for the LECs’ distribu-
tion functions.

The energies of the states below the break-
down scale can be written as an expansion of
the form

E(I⇡) = !1

1X

i

ci(I
⇡)"i (29)

with

" ⌘ N
!1

⇤
. (30)

In our case

!1

⇤
⇡ 1

3
. (31)

If the expansion is truncated at order O("2), a
comparison with the NNLO spectrum (25) al-
lows us to identify

c0(I
⇡) ⌘ ELO(I⇡)

!1
, (32)

c1(I
⇡) ⌘ ENLO(I⇡)

"!1
(33)

and

c2(I
⇡) ⌘ ENNLO(I⇡)

"2!1
(34)

From the power counting one expects these co-
e�cients to be of order O(1).

Figure 2 shows the cumulative distributions
of the c1 and c2 coe�cients for the energies of
states below the breakdown scale in an ensemble
containing the data of all studied Pd and Ag
nuclei. These distributions, with means µ1 and
µ2, respectively, can be approximated by the
Gaussian prior

pr(G)(c̃i|c) = 1p
2⇡sc

e�
c̃2i

2s2c2 with s =
2

3
(35)

for the expansion coe�cient ci = c̃i + µi. Here,
µi ⌘ ci is the mean value of the ci. The param-
eter c, associated with the width of the distribu-
tion, is not taken from Fig. 2. Instead, we make
the assumption that c is log-normal distributed
according to

pr(c) =
1p
2⇡�c

e�
log

2 c

2�2 . (36)

The log normal distribution is consistent with
the EFT expectation that LECs are of natu-
ral size, i.e. that the coe�cient c is of order
one [37]. Given the priors (35) and (36), one
calculates the probability distribution function
(PDF) for ci by marginalizing over the param-
eter c and finds

p(ci � µ) =

1Z

0

dcpr(G)(ci � µi|c)pr(c). (37)
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LO:
• One	LEC
• Harmonic	behavior

Order-by-order	improvement



LO:
• One	LEC
• Harmonic	behavior

NLO:
• Two	additional	LECs
• Particle-core	interactions

Order-by-order	improvement



LO:
• One	LEC
• Harmonic	behavior

NLO:
• Two	additional	LECs
• Particle-core	interactions

NNLO:
• Three	additional	three	LECs
• Anharmonic corrections

Accuracy	and	precision	increases	
order	by	order	at	the	expense	of	
reduced	predictive	power

Order-by-order	improvement
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TABLE IV. Reduced transition probabilities
for phonon-annihilating E2 transitions in the
106Pd/107Ag system in Weisskopf units. The
uncertainty was quantified from 68% DOB intervals.

Nucleus I⇡i ! I⇡f B(E2)
exp

B(E2)
EFT

106Pd 2+
1

! 0+
1

44(1) 35(12)

0+
2

! 2+
1

35(8) 69(23)

2+
2

! 2+
1

44(4) 69(23)

4+
1

! 2+
1

76(11) 69(23)
107Ag 3

2

�
1

! 1

2

�
1

42(4) 34(11)
5

2

�
1

! 1

2

�
1

43(3) 34(11)
1

2

�
2

! 3

2

�
1

27(23)
1

2

�
2

! 5

2

�
1

41(23)
3

2

�
2

! 3

2

�
1

48(23)
3

2

�
2

! 5

2

�
1

20(23)
5

2

�
2

! 3

2

�
1

14(23)
5

2

�
2

! 5

2

�
1

55(23)
7

2

�
1

! 3

2

�
1

62(23)
7

2

�
1

! 5

2

�
1

7(23)
9

2

�
1

! 5

2

�
1

68(23)

TABLE V. Reduced transition probabilities
for phonon-annihilating E2 transitions in the
108Pd/109Ag system in Weisskopf units. The un-
certainty was quantified from 68% DOB intervals.

Nucleus I⇡i ! I⇡f B(E2)
exp

B(E2)
EFT

108Pd 2+
1

! 0+
1

49(1) 34(11)

0+
2

! 2+
1

52(5) 69(23)

2+
2

! 2+
1

71(5) 69(23)

4+
1

! 2+
1

73(8) 69(23)
109Ag 3

2

�
1

! 1

2

�
1

40(40) 34(11)
5

2

�
1

! 1

2

�
1

41(6) 34(11)
1

2

�
2

! 3

2

�
1

27(23)
1

2

�
2

! 5

2

�
1

41(23)
3

2

�
2

! 3

2

�
1

49(24) 47(23)
3

2

�
2

! 5

2

�
1

20(23)
5

2

�
2

! 3

2

�
1

8(4) 14(23)
5

2

�
2

! 5

2

�
1

10(7) 54(23)
7

2

�
1

! 3

2

�
1

61(23)
7

2

�
1

! 5

2

�
1

7(23)
9

2

�
1

! 5

2

�
1

68(23)

TABLE VI. Reduced transition probabilities
for phonon-annihilating E2 transitions in the
110Cd/109Ag system in Weisskopf units. The un-
certainty was quantified from 68% DOB intervals.

Nucleus I⇡i ! I⇡f B(E2)
exp

B(E2)
EFT

110Cd 2+
1

! 0+
1

27(1) 23(8)

0+
2

! 2+
1

46(15)

2+
2

! 2+
1

30(5) 46(15)

4+
1

! 2+
1

42(9) 46(15)
109Ag 3

2

�
1

! 1

2

�
1

40(40) 23(8)
5

2

�
1

! 1

2

�
1

41(6) 23(8)
1

2

�
2

! 3

2

�
1

19(16)
1

2

�
2

! 5

2

�
1

28(16)
3

2

�
2

! 3

2

�
1

49(24) 33(16)
3

2

�
2

! 5

2

�
1

14(16)
5

2

�
2

! 3

2

�
1

8(4) 9(16)
5

2

�
2

! 5

2

�
1

10(7) 37(16)
7

2

�
1

! 3

2

�
1

42(16)
7

2

�
1

! 5

2

�
1

5(16)
9

2

�
1

! 5

2

�
1

47(16)

ployed to fit the single LECQ0. The only excep-
tion was the (1/2)12 ! (5/2)�1 transition strength
in 103Rh, which was excluded due to its unex-
pectedly large value. The values of Q0 for the
102Ru/103Rh, 106Pd/107Ag, 108Pd/109Ag and
110Cd/109Ag systems are 0.28, 0.32, 0.32 and
0.27 eb, respectively. Note that the transition
strengths in 109Ag can be described employing
either108Pd or 110Cd as a core. Both descrip-
tions agree with each other within theoretical
uncertainties.

B. Static moments and phonon-conserving
transition strengths

The term proportional to Q1 in the E2 oper-
ator (44) couples states with the same number
of phonons. Thus, Q1 enters in the LO calcula-
tion of static E2 moments. The reduced matrix
elements associated to these observables are

LO	B(E2)	values	for	phonon-
annihilating	transitions	in	the	

108Pd/109Ag	system	[W.	u.]

The	E2	operator	is	constructed	as	the	most	
general	rank-two	with	positive	parity

The	LO	B(E2)	values	for	phonon-annihilating	
transitions	are	described	in	terms	of	one	LEC

The	NLO	term	of	the	E2	operator	couples	
states	with	the	same	number	of	phonons.	
Its	matrix	elements	enter	the	description	of	
E2	static	moments	and	B(E2)	values	for	
phonon-conserving	transitions



LO	relations	between	E2	even-even	and	odd-mass	observables

102Ru/103Rh

106Pd/107Ag

108Pd/109Ag



LO	relations	between	even-even	and	odd-mass	E2	observables

106Pd/107Ag

108Pd/109Ag
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TABLE XII. Static M1 moments in the
102Ru/103Rh, 106Pd/107Ag and 108Pd/109Ag
systems in units of µN . Values marked with
an asterisk were employed to fit the LECs.
The uncertainty was quantified from 68% DOB
intervals.

Nucleus I⇡i µ
exp

(I⇡i ) µ
EFT

(I⇡i )
102Ru 2+

1

0.85(3)⇤ 0.85(5)

2+
2

0.85(10)

4+
1

1.70(8)
103Rh 1

2

�
1

�0.088⇤ �0.088
3

2

�
1

0.77(7) 0.81(5)
5

2

�
1

1.08(4) 0.76(5)
7

2

�
1

2.0(6) 1.7(1)
9

2

�
1

2.8(5) 1.6(1)
106Pd 2+

1

0.79(2)⇤ 0.79(5)

2+
2

0.71(10) 0.79(10)

4+
1

1.8(4) 1.58(8)
107Ag 1

2

�
1

�0.11⇤ �0.11
3

2

�
1

0.98(9) 0.78(5)
5

2

�
1

1.02(9) 0.68(4)
7

2

�
1

1.6(1)
9

2

�
1

1.5(1)
108Pd 2+

1

0.71(2)⇤ 0.71(4)

2+
2

0.71(9)

4+
1

1.42(7)
109Ag 1

2

�
1

�0.13⇤ �0.13
3

2

�
1

1.10(10) 0.72(5)
5

2

�
1

0.85(8) 0.58(4)
7

2

�
1

1.5(1)
9

2

�
1

1.3(1)

Refs. [56, 63] were employed to fit the LECs.
For 103Rh and 109Ag we find values for µd1 of
0.0µN and 0.08µN , and values for µa1 of 0.68µN

and 0.76µN , respectively. The small values for
µd1, although smaller than naively expected, re-
flect the fact that M1 transitions in even-even
nuclei are higher order e↵ects. The values for
µa1 are consistent with the naive estimates. Our
results are in agreement with the sparse exper-
imental data on phonon-annihilating M1 tran-
sition strengths.

TABLE XIII. Reduced transition probabilities for
phonon-conserving M1 transitions in Weisskopf
units. The uncertainty was quantified from 68%
DOB intervals.

Nucleus I⇡i ! I⇡f B(M1)
exp

B(M1)
EFT

103Rh 5

2

�
1

! 3

2

�
1

0.034(2)
5

2

�
2

! 3

2

�
2

0.034(5)
9

2

�
1

! 7

2

�
1

0.038(3)
107Ag 5

2

�
1

! 3

2

�
1

0.033(4) 0.036(2)
5

2

�
2

! 3

2

�
2

0.036(4)
9

2

�
1

! 7

2

�
1

0.040(2)
109Ag 5

2

�
1

! 3

2

�
1

0.043(7) 0.036(2)
5

2

�
2

! 3

2

�
2

0.036(3)
9

2

�
1

! 7

2

�
1

0.040(2)

V. DISCUSSION OF ODD-MASS
CADMIUM ISOTOPES

The results presented for spectra, E2 mo-
ments and transitions, and M1 moments and
transitions suggest that an EFT approach to
odd-mass nuclei yields a consistent description
of low-energy data. Admittedly, the agreement
between theory and data is also due to the rela-
tively large experimental and theoretical uncer-
tainties. More precise data is necessary to really
probe the theory, and to motivate the compu-
tation of higher-order corrections.

Technically, the EFT we considered falls

TABLE XIV. Reduced matrix elements relevant for
phonon-annihilating M1 transitions in terms of µd1

and µa1.

System Ii ! If hf ||µ̂||ii
odd-mass 3

2

1

! 1

2

1

�
q

3

2

µa1

1

2

2

! 3

2

1

q
3

5

µa1

3

2

2

! 3

2

1

� 3

5

p
42µd1 + 1

5

p
42µa1

3

2

2

! 5

2

1

� 1

5

p
42µd1 � 1

10

p
42µa1

5

2

2

! 3

2

1

1

5

p
42µd1 + 1

10

p
42µa1

5

2

2

! 5

2

1

� 14

5

p
3µd1 � 2

5

p
3µa1

7

2

1

! 5

2

1

�
q

27

5

µa1
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TABLE XII. Static M1 moments in the
102Ru/103Rh, 106Pd/107Ag and 108Pd/109Ag
systems in units of µN . Values marked with
an asterisk were employed to fit the LECs.
The uncertainty was quantified from 68% DOB
intervals.
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Refs. [56, 63] were employed to fit the LECs.
For 103Rh and 109Ag we find values for µd1 of
0.0µN and 0.08µN , and values for µa1 of 0.68µN

and 0.76µN , respectively. The small values for
µd1, although smaller than naively expected, re-
flect the fact that M1 transitions in even-even
nuclei are higher order e↵ects. The values for
µa1 are consistent with the naive estimates. Our
results are in agreement with the sparse exper-
imental data on phonon-annihilating M1 tran-
sition strengths.

TABLE XIII. Reduced transition probabilities for
phonon-conserving M1 transitions in Weisskopf
units. The uncertainty was quantified from 68%
DOB intervals.
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V. DISCUSSION OF ODD-MASS
CADMIUM ISOTOPES

The results presented for spectra, E2 mo-
ments and transitions, and M1 moments and
transitions suggest that an EFT approach to
odd-mass nuclei yields a consistent description
of low-energy data. Admittedly, the agreement
between theory and data is also due to the rela-
tively large experimental and theoretical uncer-
tainties. More precise data is necessary to really
probe the theory, and to motivate the compu-
tation of higher-order corrections.

Technically, the EFT we considered falls
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Refs. [56, 63] were employed to fit the LECs.
For 103Rh and 109Ag we find values for µd1 of
0.0µN and 0.08µN , and values for µa1 of 0.68µN

and 0.76µN , respectively. The small values for
µd1, although smaller than naively expected, re-
flect the fact that M1 transitions in even-even
nuclei are higher order e↵ects. The values for
µa1 are consistent with the naive estimates. Our
results are in agreement with the sparse exper-
imental data on phonon-annihilating M1 tran-
sition strengths.
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between theory and data is also due to the rela-
tively large experimental and theoretical uncer-
tainties. More precise data is necessary to really
probe the theory, and to motivate the compu-
tation of higher-order corrections.
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TABLE XII. Static M1 moments in the
102Ru/103Rh, 106Pd/107Ag and 108Pd/109Ag
systems in units of µN . Values marked with
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The uncertainty was quantified from 68% DOB
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Refs. [56, 63] were employed to fit the LECs.
For 103Rh and 109Ag we find values for µd1 of
0.0µN and 0.08µN , and values for µa1 of 0.68µN

and 0.76µN , respectively. The small values for
µd1, although smaller than naively expected, re-
flect the fact that M1 transitions in even-even
nuclei are higher order e↵ects. The values for
µa1 are consistent with the naive estimates. Our
results are in agreement with the sparse exper-
imental data on phonon-annihilating M1 tran-
sition strengths.

TABLE XIII. Reduced transition probabilities for
phonon-conserving M1 transitions in Weisskopf
units. The uncertainty was quantified from 68%
DOB intervals.

Nucleus I⇡i ! I⇡f B(M1)
exp

B(M1)
EFT

103Rh 5

2

�
1

! 3

2

�
1

0.034(2)
5

2

�
2

! 3

2

�
2

0.034(5)
9

2

�
1

! 7

2

�
1

0.038(3)
107Ag 5

2

�
1

! 3

2

�
1

0.033(4) 0.036(2)
5

2

�
2

! 3

2

�
2

0.036(4)
9

2

�
1

! 7

2

�
1

0.040(2)
109Ag 5

2

�
1

! 3

2

�
1

0.043(7) 0.036(2)
5

2

�
2

! 3

2

�
2

0.036(3)
9

2

�
1

! 7

2

�
1

0.040(2)

V. DISCUSSION OF ODD-MASS
CADMIUM ISOTOPES

The results presented for spectra, E2 mo-
ments and transitions, and M1 moments and
transitions suggest that an EFT approach to
odd-mass nuclei yields a consistent description
of low-energy data. Admittedly, the agreement
between theory and data is also due to the rela-
tively large experimental and theoretical uncer-
tainties. More precise data is necessary to really
probe the theory, and to motivate the compu-
tation of higher-order corrections.

Technically, the EFT we considered falls
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LO	M1	static	moment	in	
Pd/Ag	systems	[µN]

LO	B(M1)	values	for	phonon-conserving	
transitions	in	Ag	nuclei	[W.	u.]

These	observables	are	described	in	terms	of	
two	LECs	fixed	by	the	static	moments	of	low-
lying	states

B(M1)	values	for	phonon-conserving	
transitions	are	predictions	within	the	EFT

De	Frenne;	Nucl.	Data	Sheets	109,	943	(2008)
Blachot;	Nucl.	Data	Sheets	109,	1383	(2008)
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TABLE XV. Reduced transition probabilities for
phonon-annihilating M1 transitions in 103Rh and
109Ag in Weisskopf units. The uncertainty was
quantified from 68% DOB intervals.
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0.05(5)
5
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1

0.036(16) 0.033(36)
5
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2
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1

0.10(4) 0.07(4)
7

2

�
1

! 5

2

�
1

0.22(3)

in the category of “particle-vibrator” models.
Very recently, Stuchbery et al. [49] measured
g factors of the odd isotopes 111,113Cd and
found that the specific particle-vibrator model
of Ref. [73] failed to capture key aspects of
the data. A second attempt to describe these
cadmium isotopes was then made within the
particle-rotor (PR) model described in Ref. [74].

What would an EFT approach yield for these
isotopes? The 111,113Cd nuclei have I⇡ = 1/2+

ground states, and some low-lying levels can be
viewed as the result of a j⇡ = 1/2+ neutron cou-
pled to the collective excitations of 110,112Cd.
In addition to the j⇡ = 1/2+ orbital, one also
has to include a very low-lying j⇡ = 5/2+ or-
bital in the description. Let the fermion cre-
ation operators a†⌫ with ⌫ = �1/2, 1/2 and b†µ
with µ = �5/2,�3/2, . . . , 5/2 create a fermion in
the j⇡ = 1/2+ and j⇡ = 5/2+ orbital, respec-
tively. The LO Hamiltonian that governs the
interactions between the fermion degrees of free-

dom and the quadrupole bosons is

Habd = �S(n̂a + n̂b)

+!1N̂ + !bn̂b

+gdaĴ · ĵa + gdbĴ · ĵb
+!2aN̂ n̂a + !2bN̂ n̂b. (61)

Here, we used the operators

n̂a ⌘ a† · ã, (62)

n̂b ⌘ b† · b̃, (63)

ĵa ⌘ 1p
2

�
a† ⌦ ã

�(1)
, (64)

ĵb ⌘
p
70

2

⇣
b† ⌦ b̃

⌘(1)

. (65)

In the Hamiltonian (61) we omitted terms that
are quartic in the boson operators. As before, S
denotes the separation energy and is the largest
energy scale in the Hamiltonian. The di↵er-
ence between the separation energies of the a
and b fermions is denoted as !b ⇡ 0.3 MeV,
and is similar in size as !1. Interactions be-
tween the fermion orbitals are smaller correc-
tions and omitted. The Hamiltonian (61) sim-
ply describes two fermion orbitals that interact
with the quadrupole bosons but do not inter-
act with each other. Its eigenstates are simple
product states.

Within this EFT, the phonon-conserving part
of the M1 operator has the leading terms

µ̂ = µdĴ+ µaĵa + µbĵb. (66)

Stuchbery et al. found the static M1 moments
of the ground state |(1/2)+1 i = a†|0i and the
excited states

| � 5
2

�+
1
i = b†|0i and |I+f i = �

d† ⌦ f†�(I) |0i,
(67)

with f = a, b and I = 3/2, 5/2, of particular in-

LO	B(M1) values	for	phonon-conserving	
transitions	in	odd-mass	nuclei	[W.	u.]

The	LO	B(M1)	values	for	phonon-
annihilating	transitions	are	described	in	
terms	of	two	LECs

The	LO	B(M1)	values	are	in	agreement	with	
the	scarce	experimental	data

De	Frenne;	Nucl.	Data	Sheets	110,	2081	(2009)
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Table VII. E2 transition strengths for decays in the
62Zn/61Cu system. Q

0

= 3.57, Q
1

= �2.06

Nucleus I N J ! I N J B(E2)
exp

B(E2)
EFT

62Zn 2 1 2 ! 0 0 0 17(1) 13(4)

0 2 0 ! 2 1 2 25(8)

2 2 2 ! 2 1 2 18(4) 25(8)

4 2 4 ! 2 1 2 26(12) 25(8)
61Cu 1

2

1 2 ! 3

2

0 0 13(4)
3

2

1 2 ! 3

2

0 0 1(1) 13(4)

! 5

2

1 2 0(4) 0(1)
5

2

1 2 ! 3

2

0 0 7(2) 13(4)

! 1

2

1 2 17(7) 9(1)
7

2

1 2 ! 3

2

0 0 18(3) 13(4)

! 5

2

1 2 0(1) 3(1)
3

2

2 0 ! 7

2

1 2 10(8)

! 1

2

1 2 0(0) 2(8)
1

2

2 2 ! 3

2

1 2 18(8)

! 1

2

1 2 1(1) 0(8)
3

2

2 2 ! 5

2

1 2 1(1) or 2(6) 14(8)
5

2

2 2 ! 7

2

1 2 11(8)
7

2

2 2 ! 7

2

1 2 24(12) 16(8)

! 5

2

1 2 1(0) 8(8)
5

2

2 4 ! 1

2

1 2 3(1) 15(8)

! 7

2

1 2 0(0) 0(8)

! 5

2

1 2 0(0) 1(8)
7

2

2 4 ! 3

2

1 2 16(8)
9

2

2 4 ! 5
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1 2 1(1) 5(8)
11
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1 2 < 27 25(8)
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0 0 13(8)
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2
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9

2
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2
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! 7

2

1 2 18(8) 10(6)⇤
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1 2 0(0) 1(8)
7

2

2 4 ! 3

2

1 2 16(8)
9

2

2 4 ! 5

2

1 2 15(2) 20(8)

! 7

2

1 2 1(1) 5(8)
11

2

2 4 ! 7

2

1 2 < 27 25(8)
1

2

1 2 ! 5

2

0 0 13(8)
3

2

1 2 ! 5

2

0 0 13(8)
5

2

1 2 ! 5

2

0 0 13(8)
7

2

1 2 ! 5

2

0 0 < 350 13(8)
9

2

1 2 ! 5

2

0 0 5(2) 13(8)

! 7

2

1 2 18(8) 10(6)⇤

LO	B(E2) values	in	the	
62Zn/61Cu	system [W.	u.]



Summary

The	spectra	and	electromagnetic	properties	of	heavy	nuclei	were	studied	within	an	effective	
field	theory	approach
The	systematic	construction	of	the	operators	allows	for	the	estimation	of:
• the	scale	of	the	LECs	that	must	be	fitted	to	experimental	data	and
• theoretical	uncertainties.

Deformed	nuclei
Spectra	and	B(E2)	values	for	decays	within	the	ground-state	rotational	band	are	consistent	
with	data	below	the	breakdown	scale	even	in	transitional	nuclei
B(E2)	values	for	decays	between	states	in	different	bands	are	reproduced	for	LECs	of	natural	
size

Spherical	nuclei
Anharmonicities in	the	spectra	and	static	E2	moments	in	these	systems	scale	as	expected	
based	on	the	power	counting
E2	and	M1	observables	are	reproduced	within	the	EFT
Relations	between	observables	in	the	even-even	and	odd-mass	systems	are	fulfilled	within	
theoretical	uncertainties



Thanks


