Effective field theories for heavy nuclei

Eduardo Antonio Coello Pérez

Deformed nuclei (even-even nuclei)

- Ground-state rotational band
- NLO spectra and B(E2) values
- Vibrations
- LO spectra and $B(E 2)$ values

Spherical nuclei (even-even nucleus and odd-mass neighbor)

- Power counting from data
- E2 properties
- Phonon-annihilating B(E2) values
- LO relations between observables
- M1 properties
- Static M1 moments and phonon-conserving transitions
- Phonon-annihilating $B(M 1)$ values

Baglin; Nucl. Data Sheets 111, 1807 (2010)

The orientation angles θ and ϕ used as degrees of freedom via the building blocks

$$
v_{ \pm 1} \equiv \mp \sqrt{\frac{1}{2}}(\dot{\theta} \pm i \dot{\phi} \sin \theta)
$$

Under an SO(3) rotation

$$
v_{ \pm 1} \rightarrow e^{ \pm i \tilde{\gamma}} v_{ \pm 1}
$$

Quantizing the Legendre transformation of the most simple rotationally-invariant Lagrangian yields

$$
\hat{H}_{\mathrm{LO}}=\frac{1}{2 C_{0}} \hat{I}^{2}
$$

For a rigid rotor it is expected that

$$
C_{0}=\frac{3}{\xi}
$$

Higher-order corrections yield a Hamiltonian equivalent to that of the variable moment of inertia model*. The NLO Hamiltonian

$$
\hat{H}_{\mathrm{NLO}}=\hat{H}_{\mathrm{LO}}-\frac{C_{2}}{4 C_{0}^{4}} \hat{I}^{4}
$$

It is naively expected that

$$
C_{2} \sim \frac{C_{0}}{\omega^{2}}
$$

At the breakdown scale

$$
\frac{\left\langle\Delta \hat{H}_{\mathrm{NLO}}\right\rangle}{\left\langle\hat{H}_{\mathrm{LO}}\right\rangle} \sim \frac{C_{2}}{C_{0}^{3}} I_{b}^{2} \sim\left(\frac{\xi}{\omega}\right)^{2} I_{b}^{2} \sim 1
$$

Thus

$$
I_{b} \sim \sqrt{\frac{C_{0}^{3}}{C_{2}}} \sim \frac{\omega}{\xi}
$$

LO and NLO LECs compared against their naive estimates

System	$C_{0} \xi$	$\frac{C_{2}}{C_{0}} \omega^{2}$	$(\xi / \omega)^{2}$	C_{2} / C_{0}^{3}
$\mathrm{~N}_{2}$	3.00	2.1	0.000026	0.000006
H_{2}	2.99	2.2	0.0062	0.0015
${ }^{236} \mathrm{U}$	2.99	2.3	0.0043	0.0011
${ }^{174} \mathrm{Yb}$	2.99	3.4	0.0026	0.0010
${ }^{168} \mathrm{Er}$	2.99	1.0	0.0094	0.0010
${ }^{166} \mathrm{Er}$	2.98	1.6	0.011	0.0020
${ }^{162} \mathrm{Dy}$	2.98	1.9	0.0083	0.0017
${ }^{154} \mathrm{Sm}$	2.97	5.2	0.0056	0.0033
${ }^{188} \mathrm{Os}$	2.91	1.5	0.06	0.012
${ }^{154} \mathrm{Gd}$	2.88	3.3	0.033	0.013
${ }^{152} \mathrm{Sm}$	2.88	3.5	0.032	0.013
${ }^{150} \mathrm{Nd}$	2.85	3.6	0.037	0.017

Coupling between the building blocks and an electric field yield the E2 operator

The NLO B(E2) values for decays within the ground-state band are
$B(E 2)_{\mathrm{NLO}}=Q_{0}^{2}\left(C_{I_{i} 020}^{I_{f} 0}\right)^{2}\left[1+\frac{b}{a} I_{i}\left(I_{i}+1\right)\right]$
where

$$
I_{f}=I_{i}-2
$$

It is naively expected that

$$
\frac{b}{a} \sim\left(\frac{\xi}{\omega}\right)^{2} \sim \frac{C_{2}}{C_{0}^{3}}
$$

NLO LEC for B(E2) values compared against its naive estimate

System	C_{2} / C_{0}^{3}	b / a
$\mathrm{~N}_{2}$	0.000006	$-0.000 \quad 011$
H_{2}	0.0015	0.0022
${ }^{236} \mathrm{U}$	0.0011	-
${ }^{174} \mathrm{Yb}$	0.0010	-
${ }^{168} \mathrm{Er}$	0.0010	-
${ }^{166} \mathrm{Er}$	0.0020	-
${ }^{162} \mathrm{Dy}$	0.0017	-
${ }^{154} \mathrm{Sm}$	0.0033	-
${ }^{188} \mathrm{Os}$	0.012	0.008
${ }^{154} \mathrm{Gd}$	0.013	0.006
${ }^{152} \mathrm{Sm}$	0.013	0.003
${ }^{150} \mathrm{Nd}$	0.017	0.011

E2 transition moments given by

$$
Q^{2} \equiv \frac{B(E 2)_{\mathrm{NLO}}}{\left(C_{I_{i} 020}^{I_{f} 0}\right)^{2}}
$$

The LO description of decays within the ground-state band agrees with experimental data below the breakdown spin

E2 transition moments given by

$$
Q^{2} \equiv \frac{B(E 2)_{\mathrm{NLO}}}{\left(C_{I_{i} 020}^{I_{f} 0}\right)^{2}}
$$

NLO corrections are required to describe decays within the ground-state band below the breakdown spin

The vibration are described in terms of a quadrupole field. The building blocks are

$$
\Psi_{0}=\zeta+\psi_{0} \quad \Psi_{ \pm 2}=\psi_{2} e^{ \pm i 2 \gamma}
$$

Under SO(3) rotations

$$
\Psi_{0} \rightarrow \Psi_{0} \quad \Psi_{ \pm 2} \rightarrow e^{ \pm i 2 \tilde{\gamma}} \Psi_{ \pm 2}
$$

The NLO Hamiltonian and spectrum are

$$
\begin{gathered}
\hat{H}_{\mathrm{NLO}}=\frac{{\hat{p_{0}}}^{2}}{2}+\frac{\omega_{0}^{2}}{2} \psi_{0}^{2}+\frac{\hat{p}_{2}^{2}}{4}+\frac{1}{4 \psi_{2}^{2}}\left(\frac{\hat{p}_{\gamma}}{2}\right)^{2}+\frac{\omega_{2}}{4} \psi_{2}^{2}+\frac{1}{2 C_{0}}\left(\hat{I}^{2}-\hat{p}_{\gamma}^{2}\right) \\
E_{\mathrm{NLO}}\left(n_{0}, n_{2}, I, K\right)=\omega_{0} n_{0}+\frac{\omega_{2}}{2}\left(2 n_{2}+\frac{K}{2}\right)+\frac{I(I+1)-K^{2}}{2 C_{0}}
\end{gathered}
$$

Coupling between the building blocks and an electric field yield the E2 operator

The LO B(E2) values for interband decays are

$$
\begin{aligned}
B\left(E 2, i_{\beta} \rightarrow f_{g}\right) & =\frac{C_{\beta}^{2}}{2 C_{0}^{2} \omega_{0}} \frac{q^{2}}{60}\left(C_{I_{i} 020}^{I_{f} 0}\right)^{2} \\
B\left(E 2, i_{\gamma} \rightarrow f_{g}\right) & =\frac{3 C_{\gamma}^{2}}{2 C_{0}^{2} \omega_{2}} \frac{q^{2}}{60}\left(C_{I_{i} 22-2}^{I_{f} 0}\right)^{2}
\end{aligned}
$$

It is naively expected that

$$
C_{\beta} \sim C_{\gamma} \sim \xi^{-1 / 2}
$$

For ${ }^{154}$ Sm

$$
\xi^{-1 / 2} \approx 0.110 \mathrm{keV}^{-1 / 2}
$$

$$
C_{\beta} \approx 0.092 \mathrm{keV}^{-1 / 2} \quad C_{\gamma} \approx 0.181 \mathrm{keV}^{-1 / 2}
$$

LO B(E2) values for interband decays in ${ }^{154} \mathrm{Sm}\left[\mathrm{e}^{2} \mathrm{~b}^{2}\right]$.

$i \rightarrow f$	$B(E 2)_{\exp }$	$B(E 2)_{\mathrm{ET}}$
$2_{g}^{+} \rightarrow 0_{g}^{+}$	$0.863(5)$	0.863^{a}
$4_{g}^{+} \rightarrow 2_{g}^{+}$	$1.201(29)$	$1.233(9)$
$6_{g}^{+} \rightarrow 4_{g}^{+}$	$1.417(39)$	$1.358(23)$
$8_{g}^{+} \rightarrow 6_{g}^{+}$	$1.564(83)$	$1.421(43)$
$2_{\gamma}^{+} \rightarrow 0_{g}^{+}$	$0.0093(10)$	$0.0110(28)$
$2_{\gamma}^{+} \rightarrow 2_{g}^{+}$	$0.0157(15)$	0.0157^{a}
$2_{\gamma}^{+} \rightarrow 4_{g}^{+}$	$0.0018(2)$	$0.0008(2)$
$2_{\beta}^{+} \rightarrow 0_{g}^{+}$	$0.0016(2)$	$0.0025(6)$
$2_{\beta}^{+} \rightarrow 2_{g}^{+}$	$0.0035(4)$	0.0035^{a}
$2_{\beta}^{+} \rightarrow 4_{g}^{+}$	$0.0065(7)$	$0.0063(16)$

a) Values employed to fix the LECs
b) Experimental values from *
*Reich; Nuclear Data Sheets 110, 2257 (2009)
*Möller et al.; Phys. Rev. C 86, 031305 (2012)

$$
\underset{\frac{H}{5}}{\substack{0 \\ \hline \\ \hline \\ \hline}} \frac{H(4+)}{H(2+)} \approx 2
$$

The Hamiltonian is constructed in terms of boson quadrupole operators

$$
\left[d_{\mu}, d_{\nu}^{\dagger}\right]=\delta_{\mu \nu}
$$

and fermion operators

$$
\left\{a_{\mu}, a_{\nu}^{\dagger}\right\}=\delta_{\mu \nu}
$$

The later create and annihilate a fermion in a $j^{\pi}=1 / 2^{-}$orbital

The suggested power counting based on the energy scales spherical nuclei leads to a NLO Hamiltonian with the following contributions

$$
\begin{gathered}
H_{\mathrm{LO}} \equiv \omega_{1} \hat{N} \\
H_{\mathrm{NLO}} \equiv g_{J j} \hat{\mathbf{J}} \cdot \hat{\mathbf{j}}+\omega_{2} \hat{N} \hat{n} \\
H_{\mathrm{NNLO}} \equiv g_{N} \hat{N}^{2}+g_{v} \hat{\Lambda}^{2}+g_{J} \hat{J}^{2}
\end{gathered}
$$

where

$$
\hat{N} \equiv d^{\dagger} \cdot \tilde{d} \quad \hat{n} \equiv a^{\dagger} \cdot \tilde{a}
$$

$$
\hat{\mathbf{J}}=\sqrt{10}\left(d^{\dagger} \otimes \tilde{d}\right)^{(1)} \quad \hat{\mathbf{j}}=\frac{1}{\sqrt{2}}\left(a^{\dagger} \otimes \tilde{a}\right)^{(1)}
$$

$$
\hat{\Lambda}^{2} \equiv-\left(d^{\dagger} \cdot d^{\dagger}\right)(\tilde{d} \cdot \tilde{d})+\hat{N}^{2}-3 \hat{N}
$$

Observables can be written as expansions in powers of a small parameter

$$
E\left(I^{\pi}\right)=\omega_{1} \sum_{i}^{\infty} c_{i}\left(I^{\pi}\right) \varepsilon^{i} \quad \varepsilon \equiv N \frac{\omega_{1}}{\Lambda}
$$

The expansion coefficients are expected to be of order one. This expectation can be encoded into the following priors*

$$
\begin{gathered}
\operatorname{pr}^{(\mathrm{G})}\left(\tilde{c}_{i} \mid c\right)=\frac{1}{\sqrt{2 \pi} s c} e^{-\frac{\tilde{c}_{i}^{2}}{2 s^{2} c^{2}}} \\
\operatorname{pr}(c)=\frac{1}{\sqrt{2 \pi} \sigma c} e^{-\frac{\log ^{2} c}{2 \sigma^{2}}}
\end{gathered}
$$

The cumulative distribution of the expansion coefficients agrees with the suggested power counting

Cacciari, Houdeau; Nucl. J. High Energy Phys. 09 (2011) 039 Furnstahl, et al.; J. Phys. G 42, 034028 (2015)

LO:

- One LEC
- Harmonic behavior

NLO:

- Two additional LECs
- Particle-core interactions

NNLO:

- Three additional three LECs
- Anharmonic corrections

Accuracy and precision increases order by order at the expense of reduced predictive power

LO B(E2) values for phononannihilating transitions in the ${ }^{108} \mathrm{Pd} /{ }^{109} \mathrm{Ag}$ system [W. u.]

The E2 operator is constructed as the most general rank-two with positive parity

The LO B(E2) values for phonon-annihilating transitions are described in terms of one LEC

The NLO term of the E2 operator couples states with the same number of phonons. Its matrix elements enter the description of $E 2$ static moments and $B(E 2)$ values for phonon-conserving transitions
${ }^{106} \mathrm{Pd} /{ }^{107} \mathrm{Ag}$

${ }^{106} \mathrm{Pd} /{ }^{107} \mathrm{Ag}$

LO M1 static moment in
$\mathrm{Pd} / \mathrm{Ag}$ systems $\left[\mu_{N}\right]$

Nucleus	I_{i}^{π}	$\mu_{\exp }\left(I_{i}^{\pi}\right)$	$\mu_{\text {EFT }}\left(I_{i}^{\pi}\right)$
${ }^{106} \mathrm{Pd}$	2_{1}^{+}	$0.79(2)^{*}$	0.79(5)
	2_{2}^{+}	$0.71(10)$	0.79(10)
	4_{1}^{+}	1.8(4)	1.58(8)
${ }^{107} \mathrm{Ag}$	$\frac{1}{2}^{-}$	-0.11 *	-0.11
	$\frac{3}{2} 1$	0.98(9)	0.78(5)
	${ }_{5}{ }_{1}{ }^{-}$	1.02(9)	0.68(4)
	${ }_{7}{ }_{1}$		1.6(1)
	$\frac{9}{2}{ }_{1}$		$1.5(1)$
${ }^{108} \mathrm{Pd}$	2_{1}^{+}	0.71(2)*	0.71(4)
	2_{2}^{+}		0.71(9)
	4_{1}^{+}		1.42(7)
${ }^{109} \mathrm{Ag}$	$\frac{1}{2}^{-}$	-0.13^{*}	-0.13
	$\frac{3}{2}{ }_{1}$	1.10 (10)	0.72(5)
	$\frac{5}{2}{ }_{1}$	0.85(8)	0.58(4)
	$\frac{7}{2}{ }_{1}$		1.5(1)
	$\frac{9}{2}{ }_{1}$		1.3(1)

LO $B(M 1)$ values for phonon-conserving transitions in Ag nuclei [W. u.]

Nucleus	$I_{i}^{\pi} \rightarrow I_{f}^{\pi}$	$B(M 1)_{\text {exp }}$	$B(M 1)_{\text {EFt }}$
${ }^{107} \mathrm{Ag}$	$5^{5}{ }_{1}^{-} \rightarrow \frac{3}{2}_{1}^{-}$	0.033(4)	0.036(2)
	$\frac{5}{2}^{-} \rightarrow \frac{3}{2}^{-}$		0.036(4)
	$\stackrel{9}{2}_{1}^{-} \rightarrow \frac{7}{2}^{-}$		0.040(2)
${ }^{109} \mathrm{Ag}$	${ }^{\frac{5}{2}}{ }_{1}^{-} \rightarrow \frac{3}{2}^{-}$	0.043(7)	0.036(2)
	$\frac{5}{2}^{-} \rightarrow \frac{3}{2}^{-}$		0.036(3)
	$\frac{9}{2}_{1}^{-} \rightarrow \frac{7}{2}^{-}$		0.040(2)

These observables are described in terms of two LECs fixed by the static moments of lowlying states
$B(M 1)$ values for phonon-conserving transitions are predictions within the EFT

De Frenne; Nucl. Data Sheets 109, 943 (2008) Blachot; Nucl. Data Sheets 109, 1383 (2008)

LO $B(M 1)$ values for phonon-conserving transitions in odd-mass nuclei [W. u.]

Nucleus	$I_{i}^{\pi} \rightarrow I_{f}^{\pi}$	$B(M 1)_{\text {exp }}$	$B(M 1)_{\text {EFT }}$
${ }^{103} \mathrm{Rh}$	$\frac{3}{2}_{1}^{-} \rightarrow \frac{1}{2}_{1}^{-}$	0.12(1)	0.10(2)
	$\frac{1}{2}_{2}^{-} \rightarrow \frac{3}{2}_{1}^{-}$		0.08(8)
	$\frac{3}{2}_{2}^{-} \rightarrow \frac{3}{2}_{1}^{-}$		0.10(4)
	$\frac{3}{2}_{2}^{-} \rightarrow \frac{5}{2}_{1}{ }^{-}$		0.03(4)
	$5_{2}^{-}-{ }_{2}{ }_{1}^{-}$	0.014(2)	$0.018(28)$
	$\frac{5}{2}_{2}^{-} \rightarrow \frac{5}{2}_{1}^{-}$	0.020(3)	$0.023(28)$
	$\frac{7}{2}_{1}^{-} \rightarrow \frac{5}{2}_{1}^{-}$		$0.17(2)$
${ }^{109} \mathrm{Ag}$	$\frac{3}{2}_{1}^{-} \rightarrow \frac{1}{2}_{1}^{-}$	$0.117(15)$	$0.122(27)$
	$\frac{1}{2}_{2}^{-} \rightarrow \frac{3}{2}_{1}^{-}$		0.10(11)
	$\frac{3}{2}_{2}^{-} \rightarrow \frac{3}{2}_{1}^{-}$	0.16(7)	0.07(5)
	$\frac{3}{2}_{2}^{-} \rightarrow \frac{5}{2}^{-}$		$0.05(5)$
	$5_{2}^{-}-\frac{3}{2}_{1}^{-}$	0.036(16)	0.033(36)
	$5_{2}^{-}{ }_{2}^{-} \rightarrow \frac{5}{2}_{1}^{-}$	0.10(4)	0.07(4)
	${ }^{\frac{7}{2}}{ }_{1}^{-} \rightarrow \frac{5}{2}_{1}^{-}$		0.22(3)

The LO $\mathrm{B}(\mathrm{M} 1)$ values for phononannihilating transitions are described in terms of two LECs

The LO B(M1) values are in agreement with the scarce experimental data

LO B(E2) values in the ${ }^{62} \mathrm{Zn} /{ }^{61} \mathrm{Cu}$ system [W. u.]

Nucleus	$I N J \rightarrow I N J$	$B(E 2)_{\text {exp }}$	$B(E 2)_{\text {EFT }}$
${ }^{62} \mathrm{Zn}$	$212 \rightarrow 000$	17(1)	13(4)
	$020 \rightarrow 212$		25(8)
	$222 \rightarrow 212$	18(4)	25(8)
	$424 \rightarrow 212$	26(12)	25(8)
${ }^{61} \mathrm{Cu}$	$\frac{1}{2} 12 \rightarrow \frac{3}{2} 00$		13(4)
	$\frac{3}{2} 12 \rightarrow \frac{3}{2} 00$	1(1)	13(4)
	$\rightarrow \frac{5}{2} 12$	0(4)	0 (1)
	$\frac{5}{2} 12 \rightarrow \frac{3}{2} 00$	7(2)	13(4)
	$\rightarrow \frac{1}{2} 12$	17(7)	9(1)
	$\frac{7}{2} 12 \rightarrow \frac{3}{2} 00$	18(3)	13(4)
	$\rightarrow \frac{5}{2} 12$	0 (1)	3(1)
	$\frac{3}{2} 20 \rightarrow \frac{7}{2} 12$		10(8)
	$\rightarrow \frac{1}{2} 12$	0 (0)	2(8)
	$\frac{1}{2} 22 \rightarrow \frac{3}{2} 12$		18(8)
	$\rightarrow \frac{1}{2} 12$	1(1)	0 (8)
	$\frac{3}{2} 22 \rightarrow \frac{5}{2} 12$	$1(1)$ or $2(6)$	14(8)
	$\frac{5}{2} 22 \rightarrow \frac{7}{2} 12$		11(8)
	$\frac{7}{2} 22 \rightarrow \frac{7}{2} 12$	24(12)	16(8)
	$\rightarrow \frac{5}{2} 12$	1(0)	8(8)
	$\frac{5}{2} 24 \rightarrow \frac{1}{2} 12$	3(1)	15(8)
	$\rightarrow \frac{7}{2} 12$	0 (0)	0 (8)
	$\rightarrow \frac{5}{2} 12$	0 (0)	1(8)
	$\frac{7}{2} 24 \rightarrow \frac{3}{2} 12$		16(8)
	$\frac{9}{2} 24 \rightarrow \frac{5}{2} 12$	15(2)	20(8)
	$\rightarrow \frac{7}{2} 12$	1(1)	$5(8)$
	$\frac{11}{2} 24 \rightarrow \frac{7}{2} 12$	<27	25(8)

The spectra and electromagnetic properties of heavy nuclei were studied within an effective field theory approach
The systematic construction of the operators allows for the estimation of:

- the scale of the LECs that must be fitted to experimental data and
- theoretical uncertainties.

Deformed nuclei
Spectra and $B(E 2)$ values for decays within the ground-state rotational band are consistent with data below the breakdown scale even in transitional nuclei
$B(E 2)$ values for decays between states in different bands are reproduced for LECs of natural size

Spherical nuclei
Anharmonicities in the spectra and static E2 moments in these systems scale as expected based on the power counting
E2 and M1 observables are reproduced within the EFT
Relations between observables in the even-even and odd-mass systems are fulfilled within theoretical uncertainties

Thanks

