A01: Precision structure of excited states of light nuclei: Status and Outlook

TECHNISCHE UNIVERSITÄT DARMSTADT

Marcel Schilling

PI: Norbert Pietralla, Wilfried Nörtershäuser PhD Students: Michaela Hilcker, Bernhard Maaß, Marcel Schilling

04/10/17 | SFB-Workshop 2017 | Institut für Kernphysik | TU Darmstadt | AG Pietralla | 1

Goals of Project A01:

Precision data on electromagnetic observables of light nuclei

- Precision data \rightarrow Test of ab initio chiral EFT calculations(A02, A05)
- Photon scattering: ⁶Li
 - → transition matrix element: $1^+ \rightarrow 0^+$

Photon scattering: ¹¹B

- → mandatory for extracting Q(2⁺₁) of ¹²C in A03
- Electron scattering: ⁴He
 - → transition form factor: $0^+ \rightarrow 0^+$
- Laser spectroscopy: ⁸B
 - → charge radius (B. Maas)

Energy in a. u.

Energy in a. u.

SFB 1

Relative Self Absorption - ⁶Li Influence of Temperature

$$\sigma \! \rightarrow \! \varDelta \! \rightarrow \! T_{(eff)}$$

 σ : cross section Δ : Doppler width T: temperature

• Vibration of Atom \Rightarrow T_{eff}

 \rightarrow phonon density of states $g_a(v)$ using Density Functional Theory

- \rightarrow Local Density Approximation (LDA)
- \rightarrow Generalized Gradient Approximation (GGA)

$$k_{\rm B}T_{\rm eff} = \int \mathrm{h}\nu g_{\rm a}(\nu) \left(\frac{1}{\mathrm{e}^{\frac{\mathrm{h}\nu}{k_{\rm B}T}} - 1} + \frac{1}{2}\right)$$

Li LDA

GGA

- Strong binding
 Weak binding
- Short bonds
 Lo
- Long bonds

	а	b	С	γ
LDA	8.368 Å	4.966 Å	6.001 Å	115.502°
GGA	8.475 Å	5.038 Å	6.412 Å	114.958°
Experiment ^[1]	8.359 Å	4.973 Å	6.197 Å	114.830°

[1] H. Effenberger and J. Zemann, Z. Kristallographie 150, 133-138 (1979)

а

LDA

GGA

- Strong binding Weak binding
- Short bonds Long bonds

	a	b	С	γ
LDA	8.368 Å	4.966 Å	6.001 Å	115.502°
GGA	8.475 Å	5.038 Å	6.412 Å	114.958°
Experiment ^[1]	8.359 Å	4.973 Å	6.197 Å	114.830°

[1] H. Effenberger and J. Zemann, Z. Kristallographie 150, 133-138 (1979)

b

Relative Self Absorption - ⁶Li Calculation of nuclear transition width

04/10/17 | SFB-Workshop 2017 | Institut für Kernphysik | TU Darmstadt | AG Pietralla | 16

Relative Self Absorption - ⁶Li Calculation of nuclear transition width

Upcoming RSA Experiment – ¹¹B

- Goal: Extract $\Gamma(2_{1}^{+})$ of ¹²C for A03 1.2×10^4 \rightarrow Precision ~2%
- Overlap: ¹¹B and ¹²C $E(^{11}B) = 4445 keV$ E(12C) = 4439keV
- Experimental Campaign
 - I. RSA on ¹¹B
 - II. NRF on ²⁷Al

III.NRF on ¹²C

 11 B

т

Upcoming RSA Experiment - ¹¹B

- Experiment Informations
 - \rightarrow Time: ~15 days
 - → Location: DHIPS @ S-DALINAC
 - \rightarrow Energy: ~5 MeV
 - \rightarrow Target: Ready for Experiment
 - → Scatterer: ¹¹B (99.79atomic%)
 - \rightarrow Monitor: ²⁷Al (chem. 99.995%)
 - \rightarrow Targetcontainer: E-CU (DIN EN 13600)
 - \rightarrow Sealing: Pressure

 \rightarrow When? Spring 2018

Goals of Project A01: Precision data on electromagnetic observables of light nuclei

• Precision data \rightarrow Test of ab initio chiral EFT calculations(A02, A05)

•Photon scattering: ⁶Li

→ transition matrix element: $1^+ \rightarrow 0^+$

•Photon scattering: ¹¹B

- → mandatory for extracting Q(2⁺₁) of ¹²C in A03
- Electron scattering: ⁴He
 - → transition form factor: $0^+ \rightarrow 0^+$
- Laser spectroscopy: ⁸B
 - → charge radius (B. Maas)

Electron scattering - ⁴He Conception of a superfluid liquid helium target

TECHNISCHE UNIVERSITÄT DARMSTADT

- QCLAM overview \rightarrow M. Singer
- Must fit into experimental environment
- Special requirements for cryosystem

M. Hilcker, private communication

CryoVac, Troisdorf, 2017

Electron scattering - ⁴He Cryostat tests @ CryoVac

M. Hilcker, private communication

Electron scattering - ⁴He Reassembling and Testing @ IKP

- Delivered end of July 2017
- Reassembly complete
- Cryogenic test in progress

Electron scattering - ⁴He Reassembling and Testing @ IKP

- Delivered end of July 2017
- Reassembly complete
- Cryogenic test in progress

Electron scattering - ⁴He Timetable of Experiment

- First measurement May 2018 possible
- Count rate:
 7.5 Counts/s at 117° with 1 μA
- Up to 2 weeks needed to change scattering angle

Goals of Project A01: Precision data on electromagnetic observables of light nuclei

• Precision data \rightarrow Test of ab initio chiral EFT calculations(A02, A05)

•Photon scattering: ⁶Li

→ transition matrix element: $1^+ \rightarrow 0^+$

•Photon scattering: ¹¹B

- → mandatory for extracting Q(2⁺₁) of ¹²C in A03
- Electron scattering: ⁴He

→ transition form factor: $0^+ \rightarrow 0^+$

- Laser spectroscopy: ⁸B
 - → charge radius (B. Maas)

Relative Self Absorption – ⁶Li Calculation of R

