Chiral Four-Nucleon Interactions

Stefan Schulz

Institut für Kernphysik

Why Four-Body Forces?

Goals of A02

- Precision nuclear structure calculations ⇒ Are 4N forces relevant?
- Consistent ab-initio descriptions ⇒ 4N forces required starting at N³LO
- Theoretical uncertainties ⇒ Effect of neglected 4N forces?

Chiral 4N at N³LO

- PWD for 5 classes
 - 11 different operator structures
 - Crosschecks: Monte-Carlo integration
- Limit on $E_4^{\text{max}} \approx 4$ ($E_3^{\text{max}} \approx 14$)

■ Local regulator
$$\Rightarrow$$
 speedup
 $\exp\left[-\left(\frac{(\Pi'_1-\Pi_1)^2+(\Pi'_2-\Pi_2)^2+(\Pi'_3-\Pi_3)^2}{3\Lambda^2}\right)^n\right]$

- Single-particle basis
- NCSM & HF handle 4N forces explicitely
- Normal-ordering for other many-body methods

Ground State of ⁴He

- Cancellation between different classes
- Not completely converged
- Differs from previous estimate
 A. Nogga et al., EPJ Web of Conferences 3, 05006 (2010).
 - Sensitive to NN+3N interaction
 - Different regulator, model space, . . .
- Weak overall effect

 $\begin{array}{l} N_{max} = 20, \ \hbar\omega = 24 \ \text{MeV}, \ \alpha_{2B} = \alpha_{3B} = 0.08 \ \text{fm}^4 \\ \text{NN interaction at N}^3 LO \ \text{with } \Lambda = 500 \ \text{MeV/c} \ D. R. Entern et al., PRC 68, \ 041001 \ (2003) \\ 3N \ \text{interaction at N}^2 LO \ \text{with } \Lambda = 400 \ \text{MeV/c}, R. \ \text{Roth et al., PRL 109, } 052501 \ (2012) \\ 4N \ \text{interaction with } \Lambda_{4B} = 400 \ \text{MeV/c}, \ n = 2, \ \text{and } C_T = 0.21 \ \text{fm}^2 \ \text{E. Epelbaum, The EPJ A 34, 2, 197 \ (2007).} \end{array}$

Channel Contributions

$$\label{eq:Nmax} \begin{split} N_{max} &= 20, \ \hbar\omega = 24 \ \text{MeV}, \ \alpha_{2B} = \alpha_{3B} = 0.08 \ \text{fm}^4 \\ \text{NN interaction at N}^3 \text{LO with } \Lambda &= 500 \ \text{MeV/c} \ \text{D. R. Entern et al., PRC 68, 041001 (2003)} \\ \text{3N interaction at N}^2 \text{LO with } \Lambda &= 400 \ \text{MeV/c}, \ \text{R. Roth et al., PRL 109, 052501 (2012)} \\ \text{4N interaction with } \Lambda_{4B} &= 400 \ \text{MeV/c}, \ n = 4, \ \text{and} \ C_T &= 0.21 \ \text{fm}^2 \ \text{E. Epelbaum, The EPJ A 34, 2, 197 (2007)}. \end{split}$$

Channel Structure

 $\begin{array}{l} N_{max} = 20, \, \bar{\hbar}\omega = 24 \,\, \text{MeV}, \,\, \alpha_{2B} = \alpha_{3B} = 0.08 \,\, \text{fm}^4 \\ \text{NN interaction at N}^3 LO \,\, \text{with} \,\, \Lambda = 500 \,\, \text{MeV/c} \,\, \text{D}. \,\, \text{R}. \,\, \text{Enterm et al.}, \,\, \text{RR} \,\, 68, \,\, \text{abs} \,\, 1001 \,\, (2003) \\ \text{3N interaction at N}^2 LO \,\, \text{with} \,\, \Lambda = 400 \,\, \text{MeV/c} \,\, \text{R}. \,\, \text{Roth et al.}, \,\, \text{RR} \,\, 109, \,\, 052501 \,\, (2012) \end{array}$

Channel Structure

$$\begin{split} N_{max} &= 20, \, \hbar\omega = 24 \; \text{MeV}, \, \alpha_{2B} = \alpha_{3B} = 0.08 \; \text{fm}^4 \\ \text{NN interaction at N^3LO with Λ = $500 \; \text{MeV/c}$ D. R. Entem et al., PRC 68, 041001 (2003) \\ \text{3N interaction at N^2LO with Λ = $400 \; \text{MeV/c}$ R. Roth et al., PRL 109, 052501 (2012) } \end{split}$$

Heavier Nuclei

3N interaction at N²LO with $\Lambda = 400 \text{ MeV/c}$ R. Roth et al., PRL 109, 052501 (2012)

4N interaction with $\Lambda_{4B} = 400 \text{ MeV/c}$, n = 4, and $C_T = 0.21 \text{ fm}^2$ E. Epelbaum, The EPJ A 34, 2, 197 (2007).

- 4N interaction computationally expensive \Rightarrow low E_{4}^{max}
- Chiral 4N interactions negligible for light nuclei
- Potentially more important for heavier nuclei No indication found so far!

Thanks to my group

 S. Alexa, E. Gebrerufael, T. Hüther, R. Roth, C. Stumpf, A. Tichai, K. Vobig, R. Wirth

Institut für Kernphysik, TU Darmstadt

Thank you for your attention!

COMPUTING TIME

