Study of EM Properties Along the Carbon Isotopic Chain & O-21 A Status Report From A03

M. Mathy¹, Sebastian Heil¹, Ina Syndikus¹ and M. Petri^{2,1}

¹Institut für Kernphysik, TU Darmstadt, Germany; ²Department of Physics, University of York, United Kingdom

This work was supported by the DFG under contract No. SFB 1245.

Outline

Study of EM properties for light & medium mass nuclei:

Oxygen-21

Oxygen-21: Motivation

• Theoretical predictions differ significantly:

Chiral NN+3N	E _γ (keV)	BR (%)	τ (ps)
1/2> 5/2	1218	-	100
3/2> 5/2	2133	90	2.8
3/2> 1/2	915	10	-
USDB	E _γ (keV)	BR (%)	τ (ps)
1/2> 5/2	1218	-	154
3/2> 5/2	2133	78	2.2
3/2> 1/2	915	22	-

Oxygen-21: Experimental Setup

Measure Lifetime of 1/2⁺ in ²¹O at MSU:

Oxygen-21: First Results for 1/2+

Carbon-16

Carbon-16: Motivation & Recap

EM observables in C-16 are strongly sensitive to the details of the nuclear Hamiltonian:

Used GAMMASPHERE and μ -Ball at Argonne National Lab to measure:

• The lifetimes of the 2_2^+ , 3^+ and 4^+ states.

Carbon-16: Motivation & Recap

- Use fusion-evaporation to produced ¹⁶C: ⁹Be(⁹Be,2p)¹⁶C*
- Gate on 2p with particle detector μ-Ball and detect the emitted γ-rays in coincidence with GAMMASPHERE.
- Expected lifetimes with τ_{cm} < 4 ps are rather short.

Carbon-16: Motivation & Recap

- Use fusion-evaporation to produced ¹⁶C: ⁹Be(⁹Be,2p)¹⁶C*
- Gate on 2p with particle detector μ-Ball and detect the emitted γ-rays in coincidence with GAMMASPHERE.
- Expected lifetimes with $\tau_{\rm cm}$ < 4 ps are rather short.
- Measure τ in-fight with the Doppler-shift-attenuation method:

• Shorter $\tau \to \text{Larger mean decay } \beta \to \text{Stronger energy shift due to Doppler effect.}$

Energy shift for different radiation angle $\theta \rightarrow \tau$

Carbon-16: Latest Progress

Detector Angle θ vs. Uncorrected Energy with 2p Cut:

- Origin of ²²Ne: Target was oxidized: ${}^{9}Be + {}^{16}O \rightarrow {}^{22}Ne + 2pn$
- The 2₂⁺ state can not be seen for this low intensities (~50% of the 4⁺ or 3⁺ state**).
- Slope is sensitive to lifetime \rightarrow Compare with Geant4 simulations.

Carbon-16: Latest Progress

Test Realistic Geant4 Simulation with ²²Ne - 4₁⁺:

In the Geant4 Simulation:

- Generate excited ²²Ne isotopes in a thin oxidation layer.
- Do this for many lifetimes and compare the slopes with experiment.
- Latest Result:

Carbon-12

Carbon-12: Motivation

- Carbon-12 is a prime nucleus for many ab initio calculations.
- Exp. Q(2⁺) uncertainties are larger than theory's.

Coulomb Excitation @ JYFL

Photon Scattering @ SDALINAC

 Uniquely combine two experiments to reduce the experimental uncertainty. → High precision experiment for Q(2⁺).

arXiv:1709.07501v1 [nucl-ex] 21 Sep 2017 Reorientation-effect measurement of the first 2⁺ state in ¹²C: confirmation of oblate deformation

Result: $Q_s(2^+) = (+0.053 \pm 0.044) \text{ eb} \rightarrow 83\%$ uncertainty

Our result:

- Without new NRF measurement: <29% uncertainty in the Q(2+)
- With new NRF measurement: $\sim 2\%$ uncertainty for B(E2)

<18% uncertainty in the Q(2+)

- Using Coulomb excitation to measure the transition strength in C-12 @ 4338 keV.
- Measure scattered C-12 at backward angles with position sensitive silicon detectors.

Measure relative to Pb-208
 3⁻₁ state @ 2614 keV!
 Precision of B(E3) ~1.5%!

- Incoming beam:
 - ${}^{12}C^{4+}$
 - *E* = 47.5 MeV
- Target:
 - 300 $\mu m/cm^2~^{208}{\rm Pb}$
- Si CD: measure backscattered $^{\rm 12}{\rm C}$

• HPGe array Jurogamll to measure gamma rays.

Important: Efficiency Calibration of Jurogamll

• Low energy range (E<2 MeV) with "standard" sources:

Co-60, Eu-152, Ba-133

• Special: High energy range (E=0.8 to 5 MeV) using ${}^{nat}Zn(p,xn){}^{66}Ga$

- Statistic for Pb-208 is ~66 times larger than for C-12.
- Doppler corrected gamma spectrum for Pb-208 with C-12 in Si detector in coincidence:

Carbon-14

Carbon-14: Motivation & Recap

Perform (e,e') on ¹⁴C to extract form factors and transition strengths to low-lying excited states at the S-DALINAC:

- Also many excited states are not described well by theory.
- Challenging to theory due to cluster states.
- ~77mg/cm² radioactive ¹⁴C target enabling (e,e') for the first time in 4 decades.
- Measure the strengths for many states with improved precision or for the first time.

Carbon-14: Motivation & Recap

- Need a fast valve system for sudden vacuum failure.
- Fast piezo pressure sensors at top of the QCLAM.
- Designed a new Target chamber for QCLAM, which allows to place additional fast valves.

Carbon-14: Latest Progress

- Ordered and received most of the needed materials/parts: steel parts, vacuum parts, pressure sensors, fast closing valves.
- Pressure sensors and special vacuum flange designed and tested successfully.
- In cooperation with G. Steinhilber & M. Hilcker:

Worked on the vacuum system of QCLAM in general: Installed Zeoltih-filter system, tested (Turbo-)pumps, pressure sensors, connections...

Thank you for your attention!

Also special thanks to the Spektrometer-Gruppe

- Re-calibrated all GS detectors using 15 different energies from 245 keV to 6129 keV Sources: Y-88 / O-16 / Eu152 / Co56
 - → Result: > 23 detectors were not active during the experiment.
 - > 3 detectors have a strange response.
 - > 84 detectors can be used \rightarrow Access to 16 rings.
- For the first analysis (shown last year) the reached statistics were not satisfying:
 - → Redone µ-Ball 2D proton cuts (for every run file!) and coincidence window.
 - → Result: 30% more counts in C-16 2⁺₁ state than before!
- Unfortunately the statistics is much lower than we aimed for! Reasons:
 - → Reached beam intensity is 28% of aim intensity.
 - → 2p efficiency of µ-Ball 36% of supposed efficiency

Only ~10% of the statistic we aimed for!

Total Uncorrected γ - Spectrum with 2p Cuts:

Beta Scan for Target+Degrader Run:

Create a realistic Geant4 Simulation:

- **Problem:** Initial beta distribution of C-16 is important but difficult to implement. (Unknown evap. distribution, stuck protons, efficiencies...)
- Solution: Use experimental data as input beta distribution!

1) Degrader run for energy gates:

2) Thin target run for beta distribution:

Doppler correct for several betas & check energy

4. Oct. 2017 | TU Darmstadt | Institut für Kernphysik | AG Petri/Aumann | Michael Mathy | 29

Appendix: Carbon-16

Test realistic Geant4 Simulation with Ne-22 4⁺:

Do this for several lifetimes & extract mean decay beta.

3) Extract experimental mean decay beta:

 $\beta_{\rm Exp} = 0.0234(3)$

4) Calculate the lifetime for ²²Ne 4,⁺ using the results from 3) and 2).

Movement of E_{Lab} for the experimental data for Ne-22 4+:

Movement of E_{Lab} for the simulation for Ne-22 4⁺:

arXiv:1709.07501v1 [nucl-ex] 21 Sep 2017 Reorientation-effect measurement of the first 2^+ state in ${}^{12}C$: confirmation of oblate deformation

Downsides of this Latest Q(2+) Measurement:

- 1) Measured C.S. relative to ¹⁹⁴Pt \rightarrow Gamma-ray energy a few keV! \rightarrow Large influence by changes in beam energy.
- 2) No sufficient gamma-ray efficiency calibration at 4 MeV.
- 3) Measured only under forward angles \rightarrow No sensitivity for Q(2⁺).

Result: $Q_s(2^+) = (+0.053 \pm 0.044) \, \text{eb}$ 83% uncertainty

On-Line:

How to check that we really measure what we want to measure?

- Problem: Expect ~1600 gammas in 7 days for 2⁺ state from C-12.
- Better: Look at the 3⁻ state from Pb-208. There we expect ~60 times more counts.
- Use information from backscattered C-12 to Doppler correct the Pb-208 gamma rays.

	E_{γ} (keV) Helmer [16]	I_{γ} (rel.) Recommended
natZn, 0.25 mm <u>p @ 11 MeV, 1 enA</u> 2h beam on target	833.5324 (21) 1039.220 (3) 1333.112 (5) 1418.754 (5) 1508.158 (7) 1898.823 (8) 1918.329 (5) 2189.616 (6) 2422.525 (7) 2751.835 (5) 3228.800 (6) 3380.850 (6) 3422.040 (8) 3791.036 (8) ^c 4085.853 (9) 4295.224 (10) ^c 4461.202 (9) 4806.007 (9)	$\begin{array}{c} 15.93 \ (5) \\ 100.0 \ (3) \\ 3.175 \ (12) \\ 1.657 \ (8) \\ 1.497 \ (7) \\ 1.051 \ (8) \\ 5.368 \ (21) \\ 14.42 \ (5) \\ 5.085 \ (22) \\ 61.35 \ (23) \\ 4.082 \ (19) \\ 3.960 \ (19) \\ 2.314 \ (14) \\ 2.941 \ (19) \\ 3.445 \ (18) \\ 10.30 \ (8)^g \\ 2.26 \ (3) \\ 5.03 \ (3) \end{array}$