Extensions of the No-Core Shell Model

Klaus Vobig

Institut für Kernphysik - Theoriezentrum

Motivations

- ab initio many-body method for the description of ground and excited states in open-shell nuclei
- No-Core Shell Model (NCSM)
 will limited by basis dimension, scaling with particle number

medium-mass methods:

- In-Medium Similarity Renormalization Group (IM-SRG)
- Coupled Cluster
- Perturbation Theory (PT)
- ...

Motivations

- ab initio many-body method for the description of ground and excited states in open-shell nuclei
- No-Core Shell Model (NCSM)

---- limited by basis dimension, scaling with particle number

medium-mass methods:

- In-Medium Similarity Renormalization Group (IM-SRG)
- Coupled Cluster
- Perturbation Theory (PT)
- ...
- our approach for overcoming limitations: No-Core Shell Model based hybrid methods

 use harmonic-oscillator states with given ħΩ as single-particle basis

- use harmonic-oscillator states with given ħΩ as single-particle basis
- construct Slater-determinant(s) from single-particle states

- construct Slater-determinant(s) from single-particle states
- truncate the many-body Slater-determinant basis at a maximum number of harmonic-oscillator excitation quanta N_{max}

- use harmonic-oscillator states with given ħΩ as single-particle basis
- construct Slater-determinant(s) from single-particle states
- truncate the many-body Slater-determinant basis at a maximum number of harmonic-oscillator excitation quanta N_{max}
- represent and diagonalize Hamiltonian in this model space

NN at N³LO, $\alpha = 0.08 \text{ fm}^4$

- use harmonic-oscillator states with given ħΩ as single-particle basis
- construct Slater-determinant(s) from single-particle states
- truncate the many-body Slater-determinant basis at a maximum number of harmonic-oscillator excitation quanta N_{max}
- represent and diagonalize Hamiltonian in this model space
- use of natural-orbital basis
 → eigenbasis of one-body density from, e.g., second-order Perturbation Theory
- boost N_{max} convergence and eliminate ħΩ dependency

No-Core Shell Model: Oxygen Chain

NN at N³LO, (D. R. Entem et al., PRC 68, 041001 (2003)) 3N at N²LO with $\Lambda = 400$ MeV, (R. Roth et al., PRL 109, 052501 (2012)) free-space SRG $\alpha_{2B} = \alpha_{3B} = .08$ fm⁴

NCSM-PT: NCSM + Perturbation Theory

■ NCSM reference state from diagonalization in a small model space *M*_{ref} (typically *N*_{max} = 2)

$$|\Psi
angle = \sum_{
u \in \mathcal{M}_{\mathsf{ref}}} c_{\nu} |\phi_{\nu}
angle$$

NCSM-PT: NCSM + Perturbation Theory

- (typically single-particle e_{max} truncated)
- convergence booster efficiently accounting for correlation from huge model space

NCSM-PT: Oxygen Chain

NN at N³LO, (D. R. Entem et al., PRC 68, 041001 (2003)) 3N at N²LO with $\Lambda = 400$ MeV, (R. Roth et al., PRL 109, 052501 (2012)) free-space SRG $\alpha_{2B} = \alpha_{3B} = .08$ fm⁴

In-Medium No-Core Shell Model: Concept

)

NCSM calculation in small model space defines reference state

$$|\Psi
angle = \sum_{i} c_{i} |\Phi_{i}
angle$$

In-Medium No-Core Shell Model: Concept

In-Medium No-Core Shell Model: Concept

In-Medium No-Core Shell Model: IM-SRG

use normal-ordered operators truncated at NO2B level throughout evolution

$$\hat{H}(s) \equiv E(s) + \sum_{pq} f^p_q(s) \left\{ \hat{\rho}^{\dagger} \hat{q} \right\}_{|\psi\rangle} + \frac{1}{4} \sum_{pqrs} \Gamma^{pq}_{rs}(s) \left\{ \hat{\rho}^{\dagger} \hat{q}^{\dagger} \hat{s} \hat{r} \right\}_{|\psi\rangle}$$

perform unitary transformation via SRG flow equation approach:

$$\frac{\mathrm{d}}{\mathrm{d}s}\hat{H}(s) = \left[\hat{\eta}(s), \hat{H}(s)\right]$$

sequence generator $\hat{\eta}(s)$ defines decoupling behavior/pattern \rightsquigarrow tailor SRG for specific applications

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}s} E(s) &= \sum_{pq} \left(n_p - n_q \right) \, \eta_q^p(s) \, f_p^q(s) + \frac{1}{4} \, \sum_{pqrs} \left(\eta_{rs}^{pq}(s) \, \Gamma_{pq}^{rs}(s) \, n_p n_q \bar{n}_r \bar{n}_s - [\eta \leftrightarrow \Gamma] \right) + \mathcal{F} \left(\lambda^{(2)} \right) \\ \frac{\mathrm{d}}{\mathrm{d}s} f_2^1(s) &= \sum_p \left(\eta_p^1 \, f_2^p \, - [\eta \leftrightarrow f] \right) + \dots + \mathcal{F} \left(\lambda^{(2)} \right) \\ \frac{\mathrm{d}}{\mathrm{d}s} \Gamma_{34}^{12}(s) &= \sum_p \left(\left(\eta_p^1 \, \Gamma_{34}^{p2} - f_p^1 \, \eta_{34}^{p2} \right) - [1 \leftrightarrow 2] \right) + \dots \end{aligned}$$

coupled formulation restricted to J = 0 reference states ---- even nuclei

$$s = 0.00 \text{ MeV}^{-1}$$

- eigenvalue = E(s)
- strong couplings of N=0 space to basis states at higher N
- high N_{max} necessary for converged results

 $s = 0.04 \text{ MeV}^{-1}$

- coupling of N = 0 and higher N basis states partially suppressed
- NCSM convergence accelerated

 $s = 1.00 \text{ MeV}^{-1}$

- $N_{max} = 0$ space decoupled \leftrightarrow converged results at $N_{max} = 0$.
- eigenvalue $\neq E(s)$
- reference state $|\Psi\rangle$ not $N_{max} = 0$ eigenstate anymore
- explicit diagonalization necessary

IM-NCSM: Oxygen Chain

NN at N³LO, (D. R. Entem et al., PRC 68, 041001 (2003)) 3N at N²LO with $\Lambda = 400$ MeV, (R. Roth et al., PRL 109, 052501 (2012)) free-space SRG $\alpha_{2B} = \alpha_{3B} = .08$ fm⁴

IM-NCSM: Particle-Attached Particle Removed

NN at N³LO, (D. R. Entem et al., PRC 68, 041001 (2003)) 3N at N²LO with $\Lambda = 400$ MeV, (R. Roth et al., PRL 109, 052501 (2012)) free-space SRG $\alpha_{2B} = \alpha_{3B} = .08$ fm⁴

Applications: Spectra

E. Gebrerufael et al, Phys. Rev. Lett. 118, 152503 (2017)

- good agreement for well converged states
- slow convergence w.r.t. N_{max}
 → dominant contributions from outside N_{max} = 0 space

IM-NCSM bands: uncertainty estimate

Epilogue

Thanks to my group

S. Alexa, E. Gebrerufael, T. Hüther, J. Müller, R. Roth, S. Schulz, C. Stumpf, A. Tichai, R. Wirth Institut für Kemphysik, TU Darmstadt

Deutsche Forschungsgemeinschaft

DFG

Thank you for your attention!

*

Bundesministerium für Bildung und Forschung

COMPUTING TIME

BACKUP

Klaus Vobig – TU Darmstadt – October 4, 2017 – 13

SRG: Basic Concept & Formalism

transformation towards diagonal form w.r.t. specific basis

unitary transformation +++ SRG flow equation

$$\hat{H}(s) \equiv \hat{U}^{\dagger}(s)\hat{H}(0)\hat{U}(s) \quad \nleftrightarrow \quad \frac{\mathrm{d}}{\mathrm{d}s}\hat{H}(s) = \left[\hat{\eta}(s), \hat{H}(s)\right], \quad \hat{\eta}(s) \equiv -\hat{U}^{\dagger}(s)\frac{\mathrm{d}}{\mathrm{d}s}\hat{U}(s)$$

• observables have to be evolved simultaneously (if $\hat{\eta}(s)$ depends on $\hat{H}(s)$)

$$\frac{\mathrm{d}}{\mathrm{d}s}\hat{O}(s) = \left[\hat{\eta}(s), \hat{O}(s)\right]$$

- choice of generator $\hat{\eta} \leftrightarrow$ desired behavior
- antihermitian generator $\hat{\eta}(s)$ determines decoupling behavior and decoupling pattern \sim tailor SRG for specific applications

SRG induces many-body terms up to the A-body level

 $\hat{H}(s) = \hat{H}^{[0]}(s) + \hat{H}^{[1]}(s) + \dots + \hat{H}^{[A]}(s)$

SRG-based Many-Body Methods

tame strong short-range correlations

- "generic" decoupling of high- and low momenta in two- and three-body momentum space
- "softer" interaction with improved convergence properties in many-body calculations

SRG-based Many-Body Methods

tame strong short-range correlations

- "generic" decoupling of high- and low momenta in two- and three-body momentum space
- "softer" interaction with improved convergence properties in many-body calculations
- decoupling of reference state of specific A-body system
- even further acceleration of model-space convergence
- new opportunities, e.g., valence-space interactions from ab initio treatment

IM-SRG and Reference-State Decoupling

- decouple reference state $|\Phi\rangle$ from its ph-excitations $|\Phi_{q_1}^{p_1}\rangle$, $|\Phi_{q_1q_2}^{p_1p_2}\rangle$, ...
- partition Hamiltonian $\hat{H} = \hat{H}^{d} + \hat{H}^{od}$, suppress "off-diagonal" part
- reference state $|\Phi\rangle$ becomes ground-state of $\hat{H}(\infty)$ with eigenvalue $\langle \Phi | \hat{H}(\infty) | \Phi \rangle$
- achieved, e.g., via Wegner generator

$$\hat{\eta}(s) \equiv \left[\hat{H}^{\mathsf{d}}(s), \hat{H}(s)\right]$$

 improved numerical characteristics and efficiencies: White and imaginary-time generator

IM-SRG and Reference-State Decoupling

- decouple reference state $|\Phi\rangle$ fr $|\Phi_{q_1}^{p_1}\rangle$, $|\Phi_{q_1q_2}^{p_1p_2}\rangle$, ...
- partition Hamiltonian Ĥ
 "off-diagonal" part
- reference state $|\Phi\rangle$ become. eigenvalue $\langle \Phi | \hat{H}(\infty) | \Phi \rangle$

 $s \rightarrow \infty$

0p0h 1p1h 2p2h 3p3h

$$\hat{\eta}(s) \equiv \left[\hat{H}^{\mathsf{d}}(s), \hat{H}(s)\right]$$

 improved numerical characteristics and efficiencies: White and imaginary-time generator 4p4ł

IM-SRG and Reference-State Decoupling

- decouple reference state $|\Phi\rangle$ from its ph-excitations $|\Phi_{q_1}^{p_1}\rangle$, $|\Phi_{q_1q_2}^{p_1p_2}\rangle$, ...
- partition Hamiltonian $\hat{H} = \hat{H}^{d} + \hat{H}^{od}$, suppress "off-diagonal" part
- reference state $|\Phi\rangle$ becomes ground-state of $\hat{H}(\infty)$ with eigenvalue $\langle \Phi | \hat{H}(\infty) | \Phi \rangle$
- achieved, e.g., via Wegner generator

 $\hat{\eta}(s) \equiv [\hat{H}^{d}(s), \hat{H}(s)]$ other decoupling patterns possible (e.g. valence-space decoupling) improvement of the space decoupling) White and imaginary-time generator

In-Medium SRG: Key Ingredients

- determine reference state |Φ⟩ of A-body system (HF,NCSM,HFB,...)
- use normal-ordered form of operators throughout the evolution

$$\begin{split} \hat{H}(s) &= E(s) + \sum_{pq} f_q^p(s) \left\{ \hat{p}^{\dagger} \hat{q} \right\}_{|\Phi\rangle} + \frac{1}{4} \sum_{pqrs} \Gamma_{rs}^{pq}(s) \left\{ \hat{p}^{\dagger} \hat{q}^{\dagger} \hat{s} \hat{r} \right\}_{|\Phi\rangle} + \dots \\ \hat{\eta}(s) &= \sum_{pq} \eta_q^p(s) \left\{ \hat{p}^{\dagger} \hat{q} \right\}_{|\Phi\rangle} + \frac{1}{4} \sum_{pqrs} \eta_{rs}^{pq}(s) \left\{ \hat{p}^{\dagger} \hat{q}^{\dagger} \hat{s} \hat{r} \right\}_{|\Phi\rangle} + \dots \end{split}$$

 \leadsto reference state $|\Phi\rangle$ of A-body system defines form of operators

- IMSRG(2): truncate operators at normal-ordered two-body level
- derive flow equations for E(s), $f_a^p(s)$ and $\Gamma_{rs}^{pq}(s)$ from

$$\frac{\mathrm{d}}{\mathrm{d}s}\hat{H}(s) = \left[\hat{\eta}(s), \hat{H}(s)\right]$$

- choose and construct appropriate generator
- solve ODE system

Reference states

type of reference state determines IM-SRG "flavor"

- Single-Reference IM-SRG (SR-IM-SRG):
 - reference state is single Slater determinant from, e.g., Hartree-Fock calculation

 $|\Phi\rangle = |i_1...i_A\rangle$

applicable to closed-shell nuclei

Multi-Reference IM-SRG (MR-IM-SRG):

■ reference state from previous NCSM or Hartree-Fock-Bogoliubov calculation

$$|\Phi
angle = \sum_k |\phi_k
angle$$

- applicable to open-shell nuclei
- emergence of additional terms involving irreducible density matrices $\lambda^{(2)}, \lambda^{(3)}, ...$

Commutator Evaluation

• evaluation of $\frac{d}{ds}\hat{H}(s) = [\hat{\eta}(s), \hat{H}(s)]$ via (generalized) Wick's theorem

$$\{\hat{A}_{1}...\}\{\hat{B}_{1}...\} = \sum_{\text{ext. contr.}} \{\hat{A}_{1}...\hat{B}_{1}...\}$$

- single-particle transformed into natural-orbital basis (eigenbasis of $\gamma^{(1)}$, $\gamma^p_a \rightarrow n_p \delta_{pq}$)
- result: coupled system of first-order ordinary differential equations

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}s} E(s) &= \sum_{pq} \left(n_p - n_q \right) \, \eta_q^p(s) \, f_p^q(s) + \frac{1}{4} \, \sum_{pqrs} \left(\eta_{rs}^{pq}(s) \, \Gamma_{pq}^{rs}(s) \, n_p n_q \bar{n}_r \bar{n}_s - [\eta \leftrightarrow \Gamma] \right) + \mathcal{F} \left(\lambda^{(2)} \right) \\ \frac{\mathrm{d}}{\mathrm{d}s} f_2^1(s) &= \sum_p \left(\eta_p^1 \, f_2^p \, - [\eta \leftrightarrow f] \right) + \dots + \mathcal{F} \left(\lambda^{(2)} \right) \\ \frac{\mathrm{d}}{\mathrm{d}s} \Gamma_{34}^{12}(s) &= \sum_p \left(\left(\eta_p^1 \, \Gamma_{34}^{p2} - f_p^1 \, \eta_{34}^{p2} \right) - [1 \leftrightarrow 2] \right) + \dots \end{aligned}$$

neglection of $\lambda^{(3)}$, only scalar part of $\lambda^{(2)}$ considered (\rightsquigarrow restriction to even nuclei)

- express in terms of reduced matrix elements (+++ rank of spherical tensor operators)
- implemented in C, using BLAS, exploitation of physical symmetries (parity,...)

Commutator Evaluation

• evaluation of $\frac{d}{ds}\hat{H}(s) = [\hat{\eta}(s), \hat{H}(s)]$ via (generalized) Wick's theorem

$$\{\hat{A}_{1}...\}\{\hat{B}_{1}...\} = \sum_{\text{ext. contr.}} \{\hat{A}_{1}...\hat{B}_{1}...\}$$

- single-particle transformed into natural-orbital basis (eigenbasis of $\gamma^{(1)}$, $\gamma^p_a \rightarrow n_p \delta_{pq}$)
- result: coupled system of first-order ordinary differential equations

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}s} E(s) &= \sum_{pq} \left(n_p - n_q \right) \, \eta_q^p(s) \, f_p^q(s) + \frac{1}{4} \, \sum_{pqrs} \left(\eta_{rs}^{pq}(s) \, \Gamma_{pq}^{rs}(s) \, n_p n_q \bar{n}_r \bar{n}_s - [\eta \leftrightarrow \Gamma] \right) + \mathcal{F} \left(\lambda^{(2)} \right) \\ \frac{\mathrm{d}}{\mathrm{d}s} f_2^1(s) &= \sum_p \left(\eta_p^1 \, f_2^p \, - [\eta \leftrightarrow f] \right) + \ldots + \mathcal{F} \left(\lambda^{(2)} \right) \\ \frac{\mathrm{d}}{\mathrm{d}s} \Gamma_{34}^{12}(s) &= \sum_p \left(\left(\eta_p^1 \, \Gamma_{34}^{p2} - f_p^1 \, \eta_{34}^{p2} \right) - [1 \leftrightarrow 2] \right) + \ldots \end{split}$$

neglection of $\lambda^{(3)}$, only scalar part of $\lambda^{(2)}$ considered (\rightsquigarrow restriction to even nuclei)

ODE Solving

• formally $\frac{d}{ds}\vec{x}(s) = \vec{t}(\vec{x}(s))$, with $\vec{x}(s) = (E(s), f_0^0(s), f_1^0(s), \dots, \Gamma_{00}^{00}(s), \Gamma_{01}^{00}(s), \dots)$

flow equations are coupled system of first-order ordinary differential equations

■ typically: ~ 60 million coupled differential equations

• numerical integration of ODE system until \hat{H}^{od} is "sufficiently" suppressed

ODE solver from gsl with RKF45 algorithm is employed

Magnus Expansion

IM-SRG unitarily transforms Hamiltonian

$$\hat{H}(s) \equiv \hat{U}^{\dagger}(s)\hat{H}(0)\hat{U}(s) \quad \longleftrightarrow \quad \frac{\mathrm{d}}{\mathrm{d}s}\hat{H}(s) = \left[\hat{\eta}(s), \hat{H}(s)\right]$$

unitary transformations can be written as

$$\hat{U}(s) = \exp(\hat{\Omega}(s))$$

derive differential equation for $\hat{\Omega}(s)$ associated with unitary transformation $\hat{U}(s)$

$$\frac{\mathrm{d}}{\mathrm{d}s}\hat{\Omega}(s) = \sum_{k=0}^{\infty} \frac{B_k}{k!} \left[\hat{\Omega}(s), \hat{\eta}(s)\right]_k \qquad = \sum_{k=0}^{\infty} \frac{B_k}{k!} \underbrace{\left[\hat{\Omega}(s), \left[\hat{\Omega}(s), \left[\dots, \left[\hat{\Omega}(s), \left[\hat{$$

- solve flow equations for matrix elements of anti-hermitian $\hat{\Omega}(s)$
- Magnus(2): truncate all operators involved at two-body level
- apply unitary transformation via Baker-Campbell-Hausdorff series

$$\hat{O}(s) = \exp(-\hat{\Omega}(s))\hat{O}(0)\exp(\hat{\Omega}(s)) = \sum_{k=0}^{\infty} \frac{1}{k!} \left[\hat{\Omega}(s), \hat{O}(0)\right]_{k}$$

Magnus Expansion

IM-SRG unitarily transforms Hamiltonian

$$\hat{H}(s) \equiv \hat{U}^{\dagger}(s)\hat{H}(0)\hat{U}(s) \quad \longleftrightarrow \quad \frac{\mathrm{d}}{\mathrm{d}s}\hat{H}(s) = \left[\hat{\eta}(s), \hat{H}(s)\right]$$

unitary transformations can be written as

$$\hat{U}(s) = \exp(\hat{\Omega}(s))$$

derive differential equation for $\hat{\Omega}(s)$ associated with unitary transformation $\hat{U}(s)$

$$\frac{d}{ds}\hat{\Omega}(s) = \sum_{k=0}^{\infty} \frac{B_k}{k!} \left[\hat{\Omega}(s), \hat{\eta}(s)\right]_k = \sum_{k=0}^{\infty} \frac{B_k}{k!} \underbrace{\left[\hat{\Omega}(s), \left[\hat{\Omega}(s), \left[\dots, \left[\hat{\Omega}(s), \left[\hat{\Omega}(s, \left[\hat{\Omega}(s), \left[\hat{\Omega}(s), \left[\hat{\Omega}(s), \left[$$

$$\hat{O}(s) = \exp(-\hat{\Omega}(s))\hat{O}(0)\exp(\hat{\Omega}(s)) = \sum_{k=0}^{\infty} \frac{1}{k!} \left[\hat{\Omega}(s), \hat{O}(0)\right]_{k}$$

Benchmarks: LENPIC-NN vs. Others

paper in preparation

IM-SRG & SRPA: Transition Strengths

R. Trippel, doctoral thesis

 N^2LO_{sat} (blue line) $NN_{EM}+3N_{400}$ (dashed red line) exp. centroid (arrow) or spectra (gray)

- SRPA: 2p2h EoM approach

 → description of collective motions
- IM-SRG-evolved Hamiltonian as input → improved physical content of reference state
- transition strengths of high experimental interest
- good qualitiative agreement between experiment and theory

 → improved via IM-SRG

IM-NCSM: Ground States Carbon & Oxygen Chain

E. Gebrerufael et al, Phys. Rev. Lett. 118, 152503 (2017)

very good agreement between methods for oxygen (deviations ~ 2%)

larger method uncertainties for carbon isotopes, especially ¹²C