Preparatory theoretical work for (e, $e^{\prime} \gamma$)-coincidence spectroscopy

- "Electric dipole excitation of ${ }^{208} \mathrm{~Pb}$ by polarized electron impact",
D.H. Jakubassa-Amundsen and V.Yu. Ponomarev,

Eur. Phys. Jour. A 52 (2016) 48

- "Coincident excitation and radiative decay in electron-nucleus collisions",
D.H. Jakubassa-Amundsen and V.Yu. Ponomarev, Phys. Rev. C 95 (2017) 024310
- "Bremsstrahlung background in inelastic electron-nucleus collisions",
D.H. Jakubassa-Amundsen and A. Krugmann,
J. Phys. G: Nucl. Part. Phys. 44 (2017) 045103

$\left(e, e^{\prime} \gamma\right)$ project

ANNaLS OF PHYsics 178, 187-226 (1987)
Coincident Electron Scattering in Distorted
Wave Born Approximation
I. The ($e, c^{\prime} \gamma$) Process ${ }^{1}$
D. G. Ravenhall,* R. L. Schult,* J. Wambach,*
C. N. Papaniculas,** and S. E. Williamsun ${ }^{+}$

$$
J_{g . s .} \rightarrow J_{\text {ex }} \rightarrow J_{\text {g.s. }}
$$

$$
\begin{aligned}
& W_{f i}^{(1)}=i \frac{Z_{T} c^{2}}{4 \pi \sqrt{\omega}} \frac{\delta\left(E_{f}-E_{i}+\omega\right)}{\omega-E_{X}+i \Gamma_{n} / 2} \\
& \times \sum_{M_{n}} A_{n i}^{\mathrm{exc}}\left(M_{i}, M_{n}\right) \cdot A_{f n}^{\mathrm{dec}}\left(M_{n}, M_{f}\right)
\end{aligned}
$$

ϑ_{f} - scattering angle for electrons

θ_{k}, ϕ_{k} - scattering angle for photons

PWBA:

$$
\frac{d^{3} \sigma}{d \omega d \Omega_{e} d \Omega_{\gamma}} \sim V_{L}\left(\vartheta_{f}\right)\left|F_{L}(q)\right|^{2} V_{L}^{J_{e x}}\left(\theta_{k}, \phi_{k}\right)+V_{T}\left(\vartheta_{f}\right)\left|F_{T}(q)\right|^{2} V_{T}^{J_{e x}}\left(\theta_{k}, \phi_{k}\right)
$$

$$
+V_{L T}\left(\vartheta_{f}\right) F_{L}(q) F_{T}(q) V_{L T}^{J_{\text {ex }}}\left(\theta_{k}, \phi_{k}\right)
$$

$$
\sin ^{2}\left(2 \theta_{k}\right)+a \sin \left(4 \theta_{k}\right)
$$

$$
J_{f}=0: \quad V_{L}^{J_{e x}}\left(\theta_{k}, \phi_{k}\right)=4 \pi\left|Y_{J_{e x}}\left(\theta_{k}\right)\right|^{2}
$$

$$
J_{e x}=2^{+}: \quad V_{L}^{J_{e x}}\left(\theta_{k}, \phi_{k}\right)=\sin ^{2}\left(2 \theta_{k}\right)
$$

$$
V_{L T}^{J_{e x}}\left(\theta_{k}, \phi_{k}\right)=\sin \left(4 \theta_{k}\right) \cos \left(\phi_{k}\right)
$$

$\begin{array}{rl}-\quad a=0 . \\ -a & a=0.05\end{array}$
$-a=0.05$
$-a=0.1$
$-\quad a=0.2$

($e, e^{\prime} \gamma$) Measurements on the 4.439-MeV State of ${ }^{12} \mathrm{C}$

C. N. Papanicolas, S. E. Williamson, H. Rothhaas, ${ }^{(a)}$ G. O. Bolme, L. J. Koester, Jr.,
B. L. Miller, R. A. Miskimen, P. E. Mueller, and L. S. Cardman

Department of Physics and Nuclear Physics Laboratory, University of Illinois at Urbana-Champaign, Illinois 61801
(Received 21 August 1984)

$$
\frac{d^{3} \sigma_{\left(M_{n}=0\right)}}{d \omega d \Omega_{k} d \Omega_{f}} \sim B_{0} \sin ^{2} 2 \theta_{k}
$$

$$
\frac{d^{3} \sigma_{\left(M_{n}= \pm 1\right)}}{d \omega d \Omega_{k} d \Omega_{f}} \sim A_{ \pm 1} \cos ^{2} \theta_{k}+B_{ \pm 1} \cos ^{2} 2 \theta_{k}
$$

$$
\frac{d^{3} \sigma_{\left(M_{n}= \pm 2\right)}}{d \omega d \Omega_{k} d \Omega_{f}} \sim A_{ \pm 2} \sin ^{2} \theta_{k}+B_{ \pm 2} \sin ^{2} 2 \theta_{k}
$$

$$
B_{ \pm 2} \ll 1
$$

Cross section averaged over the detector resolution $\Delta \omega / \omega$

2_{1}^{+}versus 2_{2}^{+}

2_{2}^{+}c.s. is multiplied by F_{m} factor

