Systematics of the Electric Dipole Response in Stable Tin Isotopes*

TECHNISCHE UNIVERSITÄT DARMSTADT

Sergej Bassauer, Peter von Neumann-Cosel, Atsushi Tamii and the E422 collaboration Institut für Kernphysik, TU Darmstadt

Motivation

- Motivation
- Experimental method

- Motivation
- Experimental method
- Preliminary results

- Motivation
- Experimental method
- Preliminary results
- ► The case of ¹²⁰Sn

- Motivation
- Experimental method
- Preliminary results
- ► The case of ¹²⁰Sn
- Summary and outlook

- Pygmy Dipole Resonance (PDR)
 - Oscillation of neutron skin against core

Giant Dipole Resonance (GDR)

Oscillation of neutrons against protons

Dipole polarisability

Dipole polarisability

- Dipole polarisability
- Gamma strength function covering PDR and GDR

- Dipole polarisability
- Gamma strength function covering PDR and GDR

- Dipole polarisability
- Gamma strength function covering PDR and GDR
- Level densities in the GDR region

$$\alpha_{D} = \frac{\hbar c}{2\pi^{2}e^{2}} \sum \frac{\sigma_{abs}(E_{x})}{E_{x}^{2}} = \frac{8\pi}{9} \sum \frac{B(E1)(E_{x})}{E_{x}} \left[\text{fm}^{3}/\text{e}^{2} \right]$$

Static dipole polarisability

$$\alpha_D = \frac{\hbar c}{2\pi^2 e^2} \sum \frac{\sigma_{abs}(E_x)}{E_x^2} = \frac{8\pi}{9} \sum \frac{B(E1)(E_x)}{E_x} \left[\text{fm}^3/\text{e}^2 \right]$$

• α_D is a measure of neutron skin

$$\alpha_D = \frac{\hbar c}{2\pi^2 e^2} \sum \frac{\sigma_{abs}(E_x)}{E_x^2} = \frac{8\pi}{9} \sum \frac{B(E1)(E_x)}{E_x} \left[\text{fm}^3/\text{e}^2 \right]$$

$$\alpha_D = \frac{\hbar c}{2\pi^2 e^2} \sum \frac{\sigma_{abs}(E_x)}{E_x^2} = \frac{8\pi}{9} \sum \frac{B(E1)(E_x)}{E_x} \left[\text{fm}^3/\text{e}^2 \right]$$

- α_D is a measure of neutron skin
 - P.G. Reinhard, W. Nazarewicz, PRC 81 (2010) 051303
- PDR strength related to neutron skin

$$\alpha_D = \frac{\hbar c}{2\pi^2 e^2} \sum \frac{\sigma_{abs}(E_x)}{E_x^2} = \frac{8\pi}{9} \sum \frac{B(E1)(E_x)}{E_x} \left[\text{fm}^3/\text{e}^2 \right]$$

- α_D is a measure of neutron skin
 - P.G. Reinhard, W. Nazarewicz, PRC 81 (2010) 051303
- PDR strength related to neutron skin
 - ► J. Piekarewicz, PRC 73 (2006) 044325

$$\langle \Gamma(E_i) \rangle = \frac{1}{\rho(E_i)} \int_0^{E_i} E_{\gamma}^3 f^{E_1}(E_{\gamma}) \rho(E_i - E_{\gamma}) dE_{\gamma}$$

$$f^{E_1}(E_{\gamma}) = \frac{\langle \sigma_{abs}^{E_1} \rangle}{3(\pi \hbar c)^2 E_{\gamma}^3} \bigoplus_{g.s.} f^{e_1} e_{r} e_{r}$$

$$\langle \Gamma(E_i) \rangle = \frac{1}{\rho(E_i)} \int_0^{E_i} E_{\gamma}^3 f^{E_1}(E_{\gamma}) \rho(E_i - E_{\gamma}) dE_{\gamma}$$

$$f^{E_1}(E_{\gamma}) = \frac{\langle \sigma_{abs}^{E_1} \rangle}{3(\pi \hbar c)^2 E_{\gamma}^3} \bigoplus_{g,g} f^{E_1}(E_{\gamma}) \rho(E_i, J) \bigoplus_{g,g} f^{E_1}(E_{\gamma}) = \frac{\langle \Gamma_0^{E_1}(E_{\gamma}) \rangle}{E_{\gamma}^3} \rho(E_i, J) \bigoplus_{g,g} f^{E_1}(E_{\gamma}) = \frac{\langle \Gamma_0^{E_1}(E_{\gamma}) \rangle}{f(MeV^3)}$$

Brink-Axel hypothesis

$$\langle \Gamma(E_i) \rangle = \frac{1}{\rho(E_i)} \int_0^{E_i} E_{\gamma}^3 f^{E_1}(E_{\gamma}) \rho(E_i - E_{\gamma}) dE_{\gamma}$$

$$f^{E_1}(E_{\gamma}) = \frac{\langle \sigma_{abs}^{E_1} \rangle}{3(\pi \hbar c)^2 E_{\gamma}^3} \underbrace{f_{\gamma}^{E_1}(E_{\gamma})}_{g,s} \rho(E_i, J) \underbrace{f_{\gamma}^{E_1}}_{g,s} f_{\gamma}^{E_1} \int_{g,s}^{horegoint} f_{\gamma}^{E_1} \int_{g,$$

• GSF depends only on E_{γ}

$$\langle \Gamma(E_i) \rangle = \frac{1}{\rho(E_i)} \int_0^{E_i} E_{\gamma}^3 f^{E_1}(E_{\gamma}) \rho(E_i - E_{\gamma}) dE_{\gamma}$$

$$f^{E_1}(E_{\gamma}) = \frac{\langle \sigma_{abs}^{E_1} \rangle}{3(\pi \hbar c)^2 E_{\gamma}^3} \bigoplus_{g.s.} e_{g.s.} e$$

- Brink-Axel hypothesis
 - GSF depends only on E_{γ}
 - Independent of the structure of initial state

Background from MDA

- Background from MDA
- Stationary spectrum

$$\mathsf{d}(E_x) = \frac{g(E_x)}{g_{>}(E_x)}$$

 $g(E_x)$ $g_>(E_x)$

- Background from MDA
- Stationary spectrum

$$\mathsf{d}(E_x) = \frac{g(E_x)}{g_>(E_x)}$$

• Autocorrelation function $C(\varepsilon) = \frac{\langle d(E_x) \cdot d(E_x + \varepsilon) \rangle}{\langle d(E_x) \rangle \cdot \langle d(E_x + \varepsilon) \rangle} \stackrel{(1.025)}{=} 1.000 \\ \stackrel{(1.025)}{=} 1.0$

 $\frac{d^2\sigma}{MdE}$ (mb/sr/MeV)

20

20.

120Sn(p.p')

MDA background

P. Hansen, B. Jonson, und A. Richter, Nuclear Physics A 518 (1990) 13, ISSN 0375-9474

112Sn STABLE	113Sn 115.09 D	114Sn STABLE	115Sn STABLE 0.34%	116Sn STABLE 14 54%	117Sn STABLE 7.68%	118Sn STABLE 24.22%	119Sn STABLE 8 59%	120Sn STABLE 32.58%	121Sn 27.03 H	122Sn STABLE 4.53%	123Sn 129.2 D	124Sn STABLE 5.79%	132Sn 39.7 S
0.5174	e: 100.00%	0.5070	0.51%	11.547	1.00/	LILLA	0.2074	02.007	β-: 100.00%	1.00/	β-: 100.00%		β-: 100.00%

0.97%	132Sn 39.7 S β-: 100.00	β-:	124Sn STABLE 5.79%	123Sn 129.2 D β-: 100.00%	122Sn STABLE 4.63%	121Sn 27.03 H β-: 100.00%	120Sn STABLE 32.58%	119Sn STABLE 8.59%	118Sn STABLE 24.22%	117Sn STABLE 7.68%	116Sn STABLE 14.54%	115Sn STABLE 0.34%	114Sn STABLE 0.66%	113Sn 115.09 D 6: 100.00%	112Sn STABLE 0.97%
-------	-------------------------------	-----	--------------------------	---------------------------------	--------------------------	---------------------------------	---------------------------	--------------------------	---------------------------	--------------------------	---------------------------	--------------------------	--------------------------	---------------------------------	--------------------------

Wide mass range with little change of the underlying structure

112Sn	113Sn	114Sn	115Sn	116Sn	117Sn	118Sn	119Sn	120\$n	121Sn	122Sn	123Sn	124Sn	132Sn
STABLE	115.09 D	STABLE	27.03 H	STABLE	129.2 D	STABLE	39.7 S						
0.97%	€ 100.00%	0.66%	0.34%	14.54%	7.68%	24.22%	8.59%	32.58%	β-: 100.00%	4.63%	β-: 100.00%	5.79%	β-: 100.00%

- Wide mass range with little change of the underlying structure
 Experiment: Data available in stable and unstable isotopes
 - ► NRF: ¹¹²Sn, ¹¹⁶Sn, ¹²⁰Sn, ¹²⁴Sn
 - Coulomb dissociation: ^{124–132}Sn
 - Alpha scattering: ¹²⁸Sn, ¹³²Sn
 - ► Proton scattering: ¹²⁰Sn, ¹¹²Sn, ¹¹⁶Sn, ¹¹⁸Sn, ¹²⁴Sn

112Sn	113Sn	114Sn	115Sn	116Sn	117Sn	118Sn	119Sn	120Sn	121Sn	122Sn	123Sn	124Sn	132Sn
STABLE	115.09 D	STABLE	27.03 H	STABLE	129.2 D	STABLE	39.7 S						
0.97%	6 100.00%	0.66%	0.34%	14.54%	7.68%	24.22%	8.59%	32.58%	8-: 100.00%	4.63%	8-: 100.00%	5.79%	8-: 100.00%

- Wide mass range with little change of the underlying structure
 Experiment: Data available in stable and unstable isotopes
 - NRF: ¹¹²Sn, ¹¹⁶Sn, ¹²⁰Sn, ¹²⁴Sn
 - Coulomb dissociation: ^{124–132}Sn
 - Alpha scattering: ¹²⁸Sn, ¹³²Sn
 - Proton scattering: ¹²⁰Sn, ¹¹²Sn, ¹¹⁶Sn, ¹¹⁸Sn, ¹²⁴Sn

112Sn STABLE 0.97%	113Sn 115.09 D	114Sn STABLE 0.66%	115Sn STABLE 0.34%	116Sn STABLE 14.54%	117Sn STABLE 7.68%	118Sn STABLE 24.22%	119Sn STABLE 8.59%	120Sn STABLE 32.58%	121Sn 27.03 H	122Sn STABLE 4.63%	123Sn 129.2 D	124Sn STABLE 5.79%	132Sn 39.7 S
	e. 100.00%								p		p=. 100.0034		p . 100.000

- Wide mass range with little change of the underlying structure
 Experiment: Data available in stable and unstable isotopes
 - NRF: ¹¹²Sn, ¹¹⁶Sn, ¹²⁰Sn, ¹²⁴Sn
 - Coulomb dissociation: ^{124–132}Sn
 - Alpha scattering: ¹²⁸Sn, ¹³²Sn
 - ▶ Proton scattering: ¹²⁰Sn, ¹¹²Sn, ¹¹⁶Sn, ¹¹⁸Sn, ¹²⁴Sn
- Theory: Many calculations for PDR available
 - ► N. Tsoneva et al., NPA 731 (2004); PRC 77 (2008)
 - N. Paar et al., PLB 606 (2005)
 - ▶ J. Piekarewicz, PRC 73 (2006)
 - S. Kamerdizhiev, S.F. Kovaloo, PAN 65 (2006)
 - ▶ J. Terasaki, J. Engel, PRC 74 (2006)
 - E. Litvinova et al., PLB 647 (2007); PRC 78 (2008)

Experiment at RCNP: E422 campaign

Reaction: (p,p')

- Reaction: (p,p')
- Beam energy: 295 MeV

- Reaction: (p,p')
- Beam energy: 295 MeV
- Energy resolution: \sim 40 keV

- Reaction: (p,p')
- Beam energy: 295 MeV
- Energy resolution: \sim 40 keV
- Measured angles: 0°, 2.5°, 4.5°

- Reaction: (p,p')
- Beam energy: 295 MeV
- Energy resolution: \sim 40 keV
- Measured angles: 0°, 2.5°, 4.5°
- Main targets: ¹¹²Sn, ¹¹⁶Sn, ¹¹⁸Sn, ¹²⁴Sn

⁴ October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 11

⁴ October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 12

⁴ October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 12

⁴ October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 12

⁴ October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 12

⁴ October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 12

¹²⁰Sn(p,p') experiment conducted at RCNP, Japan

- ¹²⁰Sn(p,p') experiment conducted at RCNP, Japan
- DDCS converted to photoabsorption cross section using Virtual Photon Method

TECHNISCHE UNIVERSITÄT DARMSTADT

- ¹²⁰Sn(p,p') experiment conducted at RCNP, Japan
- DDCS converted to photoabsorption cross section using Virtual Photon Method
- E1 gamma strength function determined from photoabsorption cross section

- ¹²⁰Sn(p,p') experiment conducted at RCNP, Japan
- DDCS converted to photoabsorption cross section using Virtual Photon Method
- E1 gamma strength function determined from photoabsorption cross section
- M1 gamma strength function determined from M1 strength which was obtained using the unit cross section technique

J. Birkhan et al., PRC 93 (2016) 041302

4 October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 13

E1 and M1 Gamma Strength Functions

4 October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 14

Total Gamma Strength Function

Total Gamma Strength Function

TECHNISCHE UNIVERSITÄT DARMSTADT

4 October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 16

TECHNISCHE UNIVERSITÄT DARMSTADT

Total Gamma Strength Function

Total Gamma Strength Function

Comparison with Isoscalar Probe

4 October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 17

Level Densities of 1⁻ States

⁴ October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 18

Comparison of the Total Level Density

⁴ October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 19

Summary

4 October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 20

Summary

Preliminary results

4 October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 20

- Preliminary results
 - Comparison of tin isotopes

- Preliminary results
 - Comparison of tin isotopes
- ► The case of ¹²⁰Sn

- Preliminary results
 - Comparison of tin isotopes
- The case of ¹²⁰Sn
 - Gamma strength function

- Preliminary results
 - Comparison of tin isotopes
- The case of ¹²⁰Sn
 - Gamma strength function
 - Level densities

- Preliminary results
 - Comparison of tin isotopes
- The case of ¹²⁰Sn
 - Gamma strength function
 - Level densities

Summary

- Preliminary results
 - Comparison of tin isotopes
- The case of ¹²⁰Sn
 - Gamma strength function
 - Level densities

Outlook

Summary

- Preliminary results
 - Comparison of tin isotopes
- The case of ¹²⁰Sn
 - Gamma strength function
 - Level densities

Outlook

Determination of the double differential cross section

Summary

- Preliminary results
 - Comparison of tin isotopes
- The case of ¹²⁰Sn
 - Gamma strength function
 - Level densities

Outlook

- Determination of the double differential cross section
- Begin with Multipole Decomposition Analysis

Summary

- Preliminary results
 - Comparison of tin isotopes
- The case of ¹²⁰Sn
 - Gamma strength function
 - Level densities

Outlook

- Determination of the double differential cross section
- Begin with Multipole Decomposition Analysis
- Start doing physics!

Collaborators

Institut für Kernphysik, TU Darmstadt, Germany

S. Aslanidou, M. Hilcker, A. Krugmann, A. M. Krumbholz, P. von Neumann-Cosel, N. Pietralla, V. Yu. Ponamorev, R. Roth, M. Singer, G. Steinhilber, V. Werner, J. Wambach, M. Zweidinger

RCNP, Osaka, Japan

S. Adachi, T. Adachi, N. Aoi, P. Y. Chan, H. Fujita, Y. Fujita, G. Gey, H. T. Ha, T. Hashimoto, K. Hatanaka, F. Hattori, E. Ideguchi, A. Inoue, T. Ito, C. Iwamoto, H. J. Ong, I. Ou, A. Tamii, Y. N. Watanabe, T. Yamamoto, M. Yosoi

...and many others!
References I

- P.-G. Reinhard und W. Nazarewicz, Phys. Rev. C 81 (2010) 051303.
- J. Piekarewicz, Phys. Rev. C 73 (2006) 044325.
- P. Hansen, B. Jonson, und A. Richter, Nuclear Physics A 518 (1990) 13, ISSN 0375-9474.
- T. Hashimoto et al., Phys. Rev. C 92 (2015) 031305.
- J. Endres et al., Phys. Rev. C 85 (2012) 064331.

⁴ October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 23

⁴ October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 23

⁴ October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 23

Low energy B(E1) in ¹²⁰Sn

⁴ October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 24

 Measure ⁵⁸Ni(p,p') at 16° varying the magnetic field of the dipoles

- Measure ⁵⁸Ni(p,p') at 16° varying the magnetic field of the dipoles
- Brass sieve slit was placed at the entrance of the spectrometer

- Measure ⁵⁸Ni(p,p') at 16° varying the magnetic field of the dipoles
- Brass sieve slit was placed at the entrance of the spectrometer

i=0 i=0 k=0 l=0

Horizontal angle θ_t and vertical angles
φ_t from multidimensional fitting

$\theta_{t} = \sum_{i=0}^{1} \sum_{j=0}^{1} a_{ij} x_{fp}^{i} \theta_{fp}^{j}$ $\phi_{t} = \sum_{i=0}^{1} \sum_{j=0}^{1} \sum_{j=0}^{1} \sum_{j=0}^{1} b_{ijkl} x_{fp}^{i} \theta_{fp}^{j} y_{fp}^{k} \phi_{fp}^{l} + \sum_{j=0}^{1} c_{m} x_{fp}^{m} y_{LAS}$

A. Tamii, Seminar, TU Darmstadt (2005)

4 October 2017 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2017 | Sergej Bassauer | 26

TECHNISCHE UNIVERSITÄT DARMSTADT

Background Subtraction

TECHNISCHE

► Background: flat distribution in non-dispersive focal plane

Background Subtraction

TECHNISCHE

- Background: flat distribution in non-dispersive focal plane
- True events around $Y_C = 0$

Background Subtraction

Background Subtraction

Background Subtraction

