Overview of Nuclear Physics Program **@MAMI and** MESA

The MAMI Legacy

CONCETTINASFIENTI

The Wheelers

The Mainz Energy Superconducting Accelerator

The Mainz Energy Superconducting Accelerator

The MESA Wheelers

The MESA Wheelers

Solenoid

Spectrometer

Integrating

and tracking

detectors

Polarimetry

(<0.5%)

THEY CALLED IT P2 ...

The physics cases

Low energy nuclear physics

High luminosity + high resolution + polarized beam and target

The physics cases

Low energy nuclear physics

High luminosity + high resolution + polarized beam and target

High luminosity + high resolution

High luminosity + polarized beam

CONCETTINASFIENTI

"The Search for the Nuclear Symmetry Energy" (Theory-Vision)

$$E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \delta^{2} + \mathcal{O}(\delta)^{4}$$

$$E(\rho, \delta) = \left[\sum_{k=1}^{L} \left(\rho - \rho_{0} \right) + K_{sym}(\rho - \rho_{0})^{2} \right]$$

$$E_{sym}(\rho) = \left[S_v + \frac{L}{3}\left(\frac{p - \rho_0}{\rho_0}\right) + \frac{\pi_{sym}}{18}\left(\frac{p - \rho_0}{\rho_0}\right)\right] + \dots$$

"The Search for the Nuclear Symmetry Energy" (Theory-Vision)

$$E\left(\rho,\delta\right) = E\left(\rho,0\right) + E_{sym}\left(\rho\right)\delta^{2} + \mathcal{O}\left(\delta\right)^{4}$$
$$E_{sym}(\rho) = \left[S_{v} + \frac{L}{3}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right)^{2}\right] + \dots$$

slope parameter

$$L = 3\rho_0 \frac{\partial E_{sym}\left(\rho\right)}{\partial \rho} \bigg|_{\rho_0}$$

curvature parameter

$$K_{sym} = 9\rho_0^2 \frac{\partial^2 E_{sym}\left(\rho\right)}{\partial\rho^2} \bigg|_{\rho_0}$$

 $\left(\begin{array}{c} \hline \rho_0 \end{array} \right)^+ 18 \left(\begin{array}{c} \rho_0 \end{array} \right)$

...the (blind!?) search for the Nuclear Symmetry Energy

$$E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \delta^2 + \mathcal{O}(\delta)^4$$

$$E_{sym}(\rho) = \left[S_v + \frac{L}{3}\left(\frac{\rho - \rho_0}{\rho_0}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_0}{\rho_0}\right)^2\right] + \dots$$

...the (blind!?) search for the Nuclear Symmetry Energy

$$E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \delta^{2} + \mathcal{O}(\delta)^{4}$$

$$E_{sym}(\rho) = \left[S_v + \frac{L}{3}\left(\frac{\rho - \rho_0}{\rho_0}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_0}{\rho_0}\right)^2\right] + \dots$$

ONCETTINA SFIENTI

FROM MEASURABLE OBSERVABLES TO THE NEUTRON SKIN

All observables are equal, but some observables are more equal than others ... Pedigree!

- How is the measured observable connected to the neutron skin?
- What are the assumptions implicit in making this connection? Impulse approximation, off-shell ambiguities, distortion effects, …

VCETTINASFIENTI

What is actually measured? Cross section, asymmetry, spin observables, ...

- How sensitive is the extraction of the neutron radius/skin to these assumptions?
- Quantitative assessment of both statistical and systematic errors

Mainz Institute for

Neutron Skins of Nuclei: from laboratory to stars C. Horowitz, J. Piekarewicz, CS (to appear JPG)

TINASFIENTI

.... could not lead to Rome...

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

... shine light on the nucleus!

$$\begin{array}{c} \gamma + A_{(g.s.)} \to \pi^0 + A_{(g.s.)} \\ & \hookrightarrow \gamma \gamma \end{array}$$

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

... shine light on the nucleus!

$$\begin{array}{c} \gamma + A_{(g.s.)} \to \pi^0 + A_{(g.s.)} \\ & \hookrightarrow \gamma \gamma \end{array}$$

Photon probe interaction well understood: No ISI π^0 meson produced with \approx probability on **p AND n TO DO: Reconstruct** π^0 from $\pi^0 \rightarrow 2\gamma$ decay

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

... shine light on the nucleus!

$$\gamma + A_{(g.s.)} \to \pi^0 + A_{(g.s.)} \to \gamma\gamma$$

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

... shine light on the nucleus!

$$\begin{array}{c} \gamma + A_{(g.s.)} \to \pi^0 + A_{(g.s.)} \\ & \hookrightarrow \gamma\gamma \end{array}$$

ETTINA**sfienti**

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

... shine light on the nucleus!

$$\begin{array}{c} \gamma + A_{(g.s.)} \to \pi^0 + A_{(g.s.)} \\ & \hookrightarrow \gamma \gamma \end{array}$$

$$\frac{d\sigma}{d\Omega}(\text{PWIA}) \propto \sin^2\left(\theta_{\pi}^*\right) A^2 F^2\left(q\right)$$

P. Capel, <u>F. Colomer, S. Tsaran</u>, M. Vanderhagen

- Working code for PWIA amplitudes for photoproduction $V_{\pi\gamma}^{(\lambda)}(\mathbf{k}_{\pi},\mathbf{k}_{\gamma})$
- Working code for scattering matrix $F_{\pi A}$ of π^0
 - Resolution of the Lippmann-Schwinger equation
 - Singularity of Coulomb solved : better constrains on $U^{\mathrm{Nucl}}(k',k)$
- $\hfill\square$ DWIA amplitudes calculation
 - Off-shell photoproduction amplitudes $V^{(\lambda)}_{\pi\gamma}({f k}'_\pi,{f k}_\gamma)$
- $\hfill\square$ Devise a better form for $U^{\rm Nucl}(k',k)$
 - + Treatment of Resonances,
 - + Use Effective Potentials (J. Piekarewicz)
 - + Sensitivity of σ_{coherent} to neutron density
 - + Benchmark theory with A/Z and Z variation

...it is a long way till Rome ... #MakeHumansSmartAgain

The shortest of the roads ...

The shortest of the roads ..

PHYSICAL REVIEW C88, 034325 (2013)

CONCETTINASFIENTI

 $\Delta \theta$ =4° : expected rate = 8.25 GHz, A_{PV} = 0.66 ppm, P = 85%, Q ≈ 86 MeV

1440h → $\delta R_n/R_n = 0.52\%$ (²⁰⁸Pb @ 155 MeV)

CONCETTINA**SFIENTI**

Beam normal (single-spin) asymmetry

- Count rate asymmetry in elastic e-scattering for transverse polarisation (normal to scattering plane)
- No PV effects BUT:
- > Helicity-correlated background contribution in PV experiments caused by transversal polarisation component
- > Necessary to measure for all targets used in PV experiment

Beam normal (single-spin) asymmetry

- Count rate asymmetry in elastic e-scattering for transverse polarisation (normal to scattering plane)
- No PV effects BUT:
- Interference term between one- and multi-photon exchange

➤ First phase: MAMI

Beam normal (single-spin) asymmetry

• Elastic peak is well-separated in precision spectrometers

Beam normal (single-spin) asymmetry

• Elastic peak is well-separated in precision spectrometers

 Raw data is uncorrelated between left/right spectrometers: highly stabilised beam!

Beam normal (single-spin) asymmetry

• Elastic peak is well-separated in precision spectrometers

- Raw data is uncorrelated between left/right spectrometers: highly stabilised beam!
 - Systematic study on ¹²C: future studies on other targets
- Improving theoryLowest Q@MAGIX

 Q^2 [GeV²/c²]

Extension to Nuclear Astrophysics

Astrophysical S-Factor of ${}^{12}C(\alpha, \gamma){}^{16}O$

- 1. Timereversal $\gamma + {}^{16}O \rightarrow {}^{12}C + \alpha$
- 2. Covering the Threshold: Electroproduction in limit $Q^2 \to 0$ $e^{+16}O \to e'^{+12}C + \alpha \quad \Leftrightarrow \quad \gamma^* + {}^{16}O \to {}^{12}C + \alpha$

Electron has large momentum, but virtual photon energy goes to zero!

3. Detection of slow recoil $\alpha \Rightarrow$ gas target, recoil detector

Extension to Nuclear Astrophysics

- 1. Timereversal $\gamma + {}^{16}O \rightarrow {}^{12}C + \alpha$
- 2. Covering the Threshold: Electroproduction in limit $Q^2 \to 0$ $e^{+16} O \to e'^{+12} C + \alpha \quad \Leftrightarrow \quad \gamma^* + {}^{16} O \to {}^{12} C + \alpha$

 ^{12}C

Electron has large momentum, but virtual photon energy goes to zero!

- 3. Detection of slow recoil $\alpha \Rightarrow$ gas target, recoil detector
 - $\sigma(E_0) \sim 10^{-17}$ barn
 - Time reversed reaction:

 $\sigma(E_0) \sim 10^{-15}$ barn

 Simulations ongoing
 Commissioning of method for higher E_{cm} @ MAMI

Cluster of Excellence Pression Physics. Pundamental Interactions and Structure of Marter PRISMA

JGU

"Wen Gott strafen will, dem erfüllt er seine Wünsche"

Concettina Sfienti

56th International Winter Meeting on Nuclear Physics

22-26 January 2018 Bormio, Italy

General Information NEWS 2018 Edition! Proceedings Registration -**Previous Conferences** Home Enter keywords... PRE-CONFERENCE SCHOOL Long-standing conference bringing together researchers and students from various fields of subatomic physics. The conference location is Bormio, a beautiful mountain resort in the Italian Alps. DEADLINES October 29: Student's fellowship application October 29: Registration and abstract submission December 1 : Notification of abstract acceptance and accommodation

