Effective theory for heavy nuclei and β decays

Toño Coello Pérez

Javier Menéndez

- Center for Nuclear Studies

The University of Tokyo

Achim Schwenk

- Institut für Kernphysik

Technische Universität Darmstadt

- ExtreMe Matter Institute GSI Helmholtzzentrum für Schwerionenforschung

Motivation

Spherical even-even and odd-mass nuclei

- Power counting
- Energy spectra
- E2 and M1 properties
β decays from odd-odd nuclei
- Low-lying odd-odd states
- Effective Gamow-Teller operator
- Uncertainty estimates
$\beta \beta$ decays

LONG TERM GOAL

- Calculate matrix elements for $0 v \beta \beta$ decays and provide an associated uncertainty estimate

IN THIS WORK

- Describe observed β and $2 v \beta \beta$ decays in order to establish whether our ET is capable to describe them consistently

$$
\underset{\frac{H}{5}}{\substack{0 \\ \hline \\ \hline \\ \hline}} \frac{H(4+)}{H(2+)} \approx 2
$$

Energy

Chiral EFT

- Nucleon and pion fields

BREAKDOWN SCALE $\Lambda \sim 1500 \mathrm{keV}$

Collective ET
-Phonons
-Few fermions

$\omega \sim 500 \mathrm{keV}$

Hamiltonian in terms of boson creation and annihilation operators (collective excitations) and fermion creation and annihilation operators (for the description of odd-mass systems)

$$
\left[d_{\mu}, d_{\nu}^{\dagger}\right]=\delta_{\mu \nu} \quad\left\{a_{\mu}, a_{\nu}^{\dagger}\right\}=\delta_{\mu \nu}
$$

LO: Bohr and Mottelson's harmonic vibrator model

$$
H_{\mathrm{LO}} \equiv \omega_{1} \hat{N} \quad \hat{N} \equiv d^{\dagger} \cdot \tilde{d}
$$

NLO: Interactions between collective core and the odd fermion

$$
H_{\mathrm{NLO}} \equiv g_{J j} \hat{\mathbf{J}} \cdot \hat{\mathbf{j}}+\omega_{2} \hat{N} \hat{n} \quad \hat{\mathbf{J}}=\sqrt{10}\left(d^{\dagger} \otimes \tilde{d}\right)^{(1)} \quad \hat{\mathbf{j}}=\frac{1}{\sqrt{2}}\left(a^{\dagger} \otimes \tilde{a}\right)^{(1)} \quad \hat{n} \equiv a^{\dagger} \cdot \tilde{a}
$$

NNLO: Anharmonicities

$$
H_{\mathrm{NNLO}} \equiv g_{N} \hat{N}^{2}+g_{v} \hat{\Lambda}^{2}+g_{J} \hat{J}^{2} \quad \hat{\Lambda}^{2} \equiv-\left(d^{\dagger} \cdot d^{\dagger}\right)(\tilde{d} \cdot \tilde{d})+\hat{N}^{2}-3 \hat{N}
$$

LO:
-One LEC

- Harmonic behavior

NLO:
-Two additional LECs
-Particle-core interactions

NNLO:
-Three additional LECs
-Anharmonic corrections

Accuracy and precision show an order-by-order increase of precision at the expense of reduced predictive power

Observables $E=\omega \sum_{n}^{\infty} c_{n} \varepsilon^{n}, \quad \varepsilon \equiv \frac{N \omega}{\Lambda}$

LECs assumed to be of order one

$$
\begin{gathered}
\operatorname{pr}^{(\mathrm{G})}\left(\tilde{c}_{i} \mid c\right)=\frac{1}{\sqrt{2 \pi} s c} e^{-\frac{\tilde{c}_{i}^{2}}{2 s^{2} c^{2}}} \\
\operatorname{pr}(c)=\frac{1}{\sqrt{2 \pi} \sigma c} e^{-\frac{\log ^{2} c}{2 \sigma^{2}}}
\end{gathered}
$$

Most general positive-parity rank-two tensor

$$
\hat{Q}=Q_{0}\left(d^{\dagger}+\tilde{d}\right)+Q_{1}\left(d^{\dagger} \otimes \tilde{d}\right)^{(2)}
$$

All terms scale similarly at breakdown

$$
Q_{1} \sim \sqrt{\frac{\omega}{\Lambda}} Q_{0}
$$

Natural scaling

$$
B \sim A \quad \Rightarrow \quad B \in\left[A \sqrt{\frac{\omega}{\Lambda}}, A \sqrt{\frac{\Lambda}{\omega}}\right]
$$

LO

-Phonon-annihilating transitions

multiphonon states

NLO
-Phonon-conserving transitions

- Static E2 moments

Most general operator of rank one

$$
\hat{\mu}=\mu_{d} \hat{\mathbf{J}}+\mu_{a} \hat{\mathbf{j}}+\left[\left(d^{\dagger}+\tilde{d}\right) \otimes\left(\mu_{d 1} \hat{\mathbf{J}}+\mu_{a 1} \hat{\mathbf{j}}\right)\right]^{(1)}
$$

LO term:

-Two LECs
-Phonon-conserving transition

- Static M1 moments

NLO term:
-Two LECs
-Phonon-annihilating transition

Low-lying positive-parity odd-odd states are constructed as

$$
\left|I M ; j_{p} ; j_{n}\right\rangle=\sum_{\mu \nu} C_{j_{n} \mu j_{p} \nu}^{I M} n_{\mu}^{\dagger} p_{\nu}^{\dagger}|0\rangle
$$

where

Most general rank-one operator coupling odd-odd and even-even states

From the power counting

$$
\frac{C_{\beta \ell}}{C_{\beta}} \stackrel{\mathrm{EFT}}{\sim} 0.58\left(\left(_{-25}^{+42}\right) \text { and } \frac{C_{\beta L \ell}}{C_{\beta}} \stackrel{\mathrm{EFT}_{\sim}}{\sim} 0.33\left({ }_{-14}^{+25}\right)\right.
$$

$$
\hat{O}_{\beta}=C_{\beta}(\tilde{p} \otimes \tilde{n})^{(1)}
$$

$$
+\sum_{\ell} C_{\beta \ell}\left[\left(d^{\dagger}+\tilde{d}\right) \otimes(\tilde{p} \otimes \tilde{n})^{(\ell)}\right]^{(1)}
$$

$$
+\sum_{L \ell} C_{\beta L \ell}\left[\left(d^{\dagger} \otimes d^{\dagger}+\tilde{d} \otimes \tilde{d}\right)^{(L)} \otimes(\tilde{p} \otimes \tilde{n})^{(\ell)}\right]^{(1)}
$$

LO term:
-Couples states with $\quad \Delta \mathcal{N}=0$

$$
{ }^{80} \mathrm{Br} \quad{ }^{80} \mathrm{Kr}
$$

$$
L^{1^{+}}
$$

NLO term:

- Couples states with $\Delta \mathcal{N}=1$

NNLO term:
-Couples states with $\Delta \mathcal{N}=2$

Corrections to odd-odd states

$$
\left\langle 0_{\mathrm{gs}}^{+}\right| \hat{O}_{\mathrm{GT}} \Delta\left|I_{i}^{+}\right\rangle \sim \frac{\omega}{\Lambda} M_{\mathrm{GT}}\left(I_{i}^{+} \rightarrow 0_{1}^{+}\right)
$$

Corrections to the effective GT operator

$$
\left\langle 0_{\mathrm{gs}}^{+}\right| \Delta \hat{O}_{\mathrm{GT}}\left|I_{i}^{+}\right\rangle \sim \frac{\omega}{\Lambda} M_{\mathrm{GT}}\left(I_{i}^{+} \rightarrow 0_{1}^{+}\right)
$$

Uncertainty estimate

$$
\Delta M_{\mathrm{GT}}\left(I_{i}^{+} \rightarrow 0_{1}^{+}\right) \sim \frac{\omega}{\Lambda} M_{\mathrm{GT}}\left(I_{i}^{+} \rightarrow 0_{1}^{+}\right)
$$

or

$$
\Delta \log (f t)_{i f} \sim \frac{\omega}{\Lambda} \frac{2}{\ln 10}=0.29
$$

GT matrix elements for $2 v \beta \beta$ decay
${ }^{100} \mathrm{Mo} \quad{ }^{100} \mathrm{Tc} \quad{ }^{100} \mathrm{Ru}$
$M_{\mathrm{GT}}^{2 \nu}=\sum_{n} \frac{\left\langle f\left\|\sum_{a} \boldsymbol{\sigma}_{a} \tau_{a}^{+}\right\| 1_{n}^{+}\right\rangle\left\langle 1_{n}^{+}\left\|\sum_{b} \boldsymbol{\sigma}_{b} \tau_{b}^{+}\right\| i\right\rangle}{D_{n f} / m_{e}}$

SSD approximation
$M_{\mathrm{GT}}^{2 \nu}(i \rightarrow f) \approx \frac{M_{\mathrm{GT}}\left(1_{1}^{+} \rightarrow 0_{f}^{+}\right) M_{\mathrm{GT}}\left(0_{i}^{+} \rightarrow 1_{1}^{+}\right)}{D_{1 f} / m_{e} c^{2}}$
Percentual uncertainty estimate

$$
\delta(\mathrm{gs} \rightarrow \mathrm{gs})=\frac{D_{11}}{\Lambda} \Phi\left(\frac{\omega}{\Lambda}, 1, \frac{D_{11}+\omega}{\omega}\right)
$$

where

$$
\Phi(z, s, a) \equiv \sum_{n=0}^{\infty} \frac{z^{n}}{(a+n)^{s}}
$$

SUMMARY

Matrix elements for β and $2 v \beta \beta$ decays from spherical nuclei can be consistently described within our simple ET when theoretical uncertainties are taken into account

OUTLOOK

 NLO corrections to the Hamiltonian for the odd-odd system and the effective GT operator are expected to decrease the uncertainty by a factor of $1 / 3$. These corrections are feasibleThe correlation between the matrix element of the double Gamow-Teller operator and the matrix element for $0 v \beta \beta$ decay can be employed to calculate the later matrix element within the ET, thus providing a matrix element for this decay with uncertainty estimate .

Thanks

