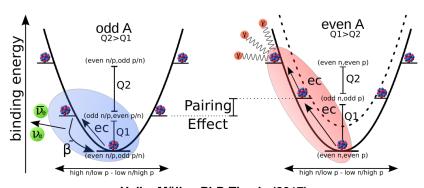

URCA processes in stellar degenerate cores Dag Fahlin Strömberg

The fate of stars

Heiko Möller, PhD Thesis (2017)

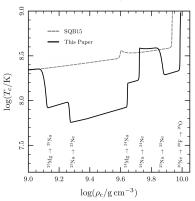
Degenerate ONe cores



- ► Content after carbon burning: ¹⁶O, ²⁰Ne, ²³Na, ²⁴Mg and ²⁵Mg.
- Also other nuclei from initial composition
- Mainly supported by degeneracy pressure
- ▶ Electron Fermi energy $E_F \sim \rho^{1/3}$ increases when the core contracts
- ▶ Electron capture when E_F is larger than the Q value
- ▶ Thresholds:

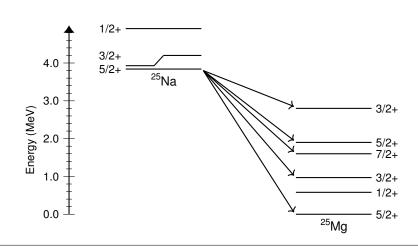
Nucleus	E_F [MeV]	$ ho$ [g \cdot cm $^{-3}$]	
²⁵ Mg	3.833	1.17×10^{9}	
²³ Na	4.374	1.67×10^{9}	
²⁴ Mg	5.513	3.16×10^{9}	
²⁰ Ne	7.026	6.20×10^{9}	
¹⁶ O	10.42	1.90×10^{10}	

Urca and double electron capture processes

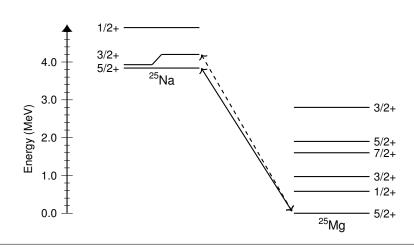


Heiko Möller, PhD Thesis (2017)

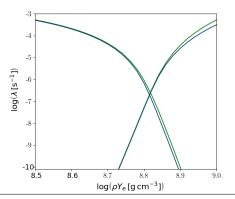
Urca cooling in acreeting ONe WD



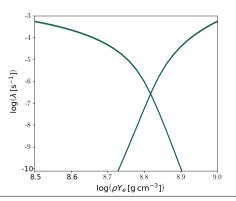
Schwab et. al, 2017.


What transitions are relevant?

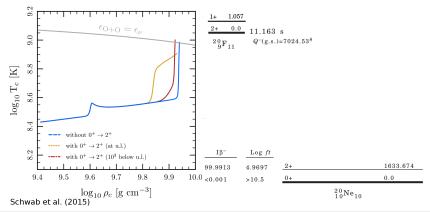
What transitions are relevant?



Is the Urca density affected?


▶ Rates for electron capture on 25 Mg and beta decay of 25 Na at $\log(T) = 8.6$:

Adding additional transitions


► Compared with rates of Suzuki et al. (2016):

Forbidden transition from ²⁰Ne

▶ Martinez-Pinedo et al (2014): forbidden transition important for EC on ²⁰Ne

Effects of additional Urca pairs

SNe Ia Keep Memory of Their Progenitor Metallicity

Luciano Piersanti^{1,2}, Eduardo Bravo³, Sergio Cristallo^{1,2}, Inmaculada Domínguez⁴, Oscar Straniero^{1,5}, Amedeo Tornambe⁶, and Gabriel Martínez-Pinedo^{7,8}

Table 1 URCA Pairs (Lines 1–8) and Double Electron-capture Triplets (Lines 9–10) Considered in the Present Work

Isobars	$ ho_{\mathrm{URCA}}$ or $ ho_{\mathrm{2EC}}$ in 10^9 g cm $^{-3}$	X_{\odot}^{a}	Source
¹⁹ F- ¹⁹ O	2.43	1.07×10^{-7}	Suzu2016
21Ne-21F	3.78	3.74×10^{-5}	Suzu2016
²³ Na- ²³ Ne	1.86	1.42×10^{-4}	Suzu2016
25Mg-25Na	1.31	3.84×10^{-5}	Suzu2016
²⁷ Al- ²⁷ Mg	0.104	5.60×10^{-5}	Suzu2016
31P-31Si	1.09	6.68×10^{-6}	Oda1994
37C1-37S	2.19	3.03×10^{-6}	Oda1994
39K-39Ar	0.012	3.39×10^{-6}	Oda1994
³² S- ³² P- ³² Si	0.144	3.14×10^{-4}	Oda1994
⁵⁶ Fe- ⁵⁶ Mn- ⁵⁶ Cr	1.27	1.05×10^{-3}	Lang2001

Note, Suzu2016: Suzuki et al. (2016), Oda1994: Oda et al. (1994), Lang2001: Langanke & Martínez-Pinedo (2001).

^a Mass fraction abundance of the β-stable isotope in the initial ZSUN model.

The Urca density of ³¹P and ³¹Si

Conclusions

- Urca processes are important for the evolution of degenerate stellar cores
- Rates are typically determined by few transitions analytic determination of the rates
- Accounting for initial composition of the star (metalicity) allows for additional Urca pairs that are currently being investigated
- Second forbidden transition from ²⁰Ne needs to be computed