Report B03

Project status and frst results to constrain NMEs for fundamental symmetries

Principal Investigators:

Prof. Dr. Joachim Enders Dr. Volker Werner

Doctoral students:

Udo Gayer Philipp Ries

Supported by DFG research grant CRC 1245

October 5, 2017 | CRC 1245 Workshop | Project B03 Joachim Enders, Volker Werner | Udo Gayer, Philipp Ries | 5

Outline

Nuclear structure and 0vββ decay

- Infuence of deformation
- Investigation of nuclear shapes
- B03 photon scattering (⁸²Se/⁸²Kr, ¹⁵⁰Sm/¹⁵⁰Nd)
- B03 electron scattering (⁷⁶Ge/⁷⁶Se)

- Nuclear structure and WIMPs
 - B03 electron scattering (¹²⁹Xe/¹³¹Xe)

Nuclear Structure and 0νββ Decay Infuence of deformation

Nuclear Structure and 0νββ Decay Infuence of deformation

T. R. Rodríguez, G. Martínez-Pinedo, Phys. Rev. Lett. **105** (2010) 252503

October 5, 2017 | CRC 1245 Workshop | Project B03 Joachim Enders, Volker Werner | Udo Gayer, Philipp Ries | 8

Nuclear Structure and 0vββ Decay TECHNISCHE UNIVERSITÄT Candidates DARMSTADT $^{150}Nd \rightarrow ^{150}Sm$ $^{128}\text{Te} \rightarrow ^{128}\text{Xe}$ $^{160}Gd \rightarrow ^{160}Dy$ $^{116}Cd \rightarrow ^{116}Sn$ $^{136}Xe \rightarrow {}^{136}Ba$ ¹⁹⁸Pt → ¹⁹⁸Ha $^{110}Pd \rightarrow ^{110}Cd$ $^{154}Sm \rightarrow ^{154}Gd$ $^{82}Se \rightarrow ^{82}Kr$ $^{148}Nd \rightarrow ~^{148}Sm$ $^{130}\text{Te} \rightarrow ^{130}\text{Xe}$ $^{76}Ge \rightarrow ^{76}Se$ $^{124}Sn \rightarrow ^{124}Te$ $^{100}Mo \rightarrow ^{100}Ru$ ${}^{96}Zr \rightarrow {}^{96}Mo$ ⁴⁸Ca → ⁴⁸Ti https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html Set of Nuclei from: J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 87 (2013) 014315

Nuclear Structure and 0νββ Decay Candidates

October 5, 2017 | CRC 1245 Workshop | Project B03 Joachim Enders, Volker Werner | Udo Gayer, Philipp Ries | 10

Nuclear Structure and 0νββ Decay Candidates

October 5, 2017 | CRC 1245 Workshop | Project B03 Joachim Enders, Volker Werner | Udo Gayer, Philipp Ries | 11

Nuclear Structure and 0vββ Decay **TECHNISCHE** UNIVERSITÄT Candidates DARMSTADT $^{150}Nd \rightarrow ^{150}Sm$ $^{128}\text{Te} \rightarrow ^{128}\text{Xe}$ $^{160}Gd \rightarrow ^{160}Dy$ $^{116}Cd \rightarrow ^{116}Sn$ $^{136}Xe \rightarrow {}^{136}Ba$ ¹⁹⁸Pt → ¹⁹⁸Ha $^{110}Pd \rightarrow ^{110}Cd$ $^{154}Sm \rightarrow ^{154}Gd$ $^{82}Se \rightarrow ^{82}Kr$ $^{148}Nd \rightarrow ^{148}Sm$ $^{130}\text{Te} \rightarrow ^{130}\text{Xe}$ $^{76}Ge \rightarrow ^{76}Se$ $^{124}Sn \rightarrow ^{124}Te$ $^{100}Mo \rightarrow ^{100}Ru$ ${}^{96}Zr \rightarrow {}^{96}Mo$ ⁴⁸Ca → ⁴⁸Ti https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html Set of Nuclei from: J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 87 (2013) 014315

Nuclear Structure and 0νββ Decay Infuence of deformation

T. R. Rodríguez, G. Martínez-Pinedo, Phys. Rev. Lett. **105** (2010) 252503

October 5, 2017 | CRC 1245 Workshop | Project B03 Joachim Enders, Volker Werner | Udo Gayer, Philipp Ries | 13

Nuclear Structure and 0νββ Decay Infuence of deformation

T. R. Rodríguez, G. Martínez-Pinedo, Phys. Rev. Lett. **105** (2010) 252503

October 5, 2017 | CRC 1245 Workshop | Project B03 Joachim Enders, Volker Werner | Udo Gayer, Philipp Ries | 14

Nuclear Structure and 0vββ Decay Investigation of nuclear shapes

- Sensitivity to nuclear shapes / shape transitions
 - $\rightarrow\,$ Decay of 1+ mixed-symmetry states / scissors mode

Nuclear Structure and 0vββ Decay Investigation of nuclear shapes

- Sensitivity to nuclear shapes / shape transitions
 - $\rightarrow\,$ Decay of 1⁺ mixed-symmetry states / scissors mode
 - $\rightarrow\,$ E0 transitions to excited 0⁺ states

Motivation 0vββ decay, Detection experiments

TECHNISCHE UNIVERSITÄT DARMSTADT

October 5, 2017 | CRC 1245 Seminar | IKP, TU Darmstadt | AG Pietralla | Udo Gayer | 17

Nuclear Structure and 0νββ Decay B03 experimental program

https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

- High-Intensity Gamma-Ray Source (HIγS) @ Duke University, Durham, NC, USA
 - \rightarrow Quasi-monoenergetic, linearly polarized photon beam
- (Still) most intense gamma-ray source in the world

H. Weller et al., Prog. Part. Nucl. Phys. (2009) 257-303

FEL mirro

 γ³ setup (⁸²Se, ¹⁵⁰Nd)
B. Löher et al., Nucl. Inst. Meth. A 723 (2013) 136-142

- 4 x 60% HPGe
 - Efficiency: ~0.2%
 - Energy Resolution: ~ 3 keV
 - Time Resolution: ~ 1 ns
- 4 x 3x3" LaBr(Ce)
 - Efficiency: ~1 % @ 1.5 MeV
 - Energy Resolution: ~ 30 keV
 - Time Resolution: ~ 0.1 ns

 γ³ setup (⁸²Se, ¹⁵⁰Nd)
B. Löher et al., Nucl. Inst. Meth. A 723 (2013) 136-142

B03 Photon Scattering Decay branchings ⁸²Se

B03 Photon Scattering Decay branchings ¹⁵⁰Sm

October 5, 2017 | CRC 1245 Workshop | Project B03 Joachim Enders, Volker Werner | Udo Gayer, Philipp Ries | 27

Electron Scattering Experiments at QCLAM

- measurements of $0\nu\beta\beta$ partners ^{76}Ge and ^{76}Se at QCLAM spectrometer at S-DALINAC
- utilizing large acceptance
- extracting form factors of 0⁺₁ and 0⁺_{gs}
- E0 transition strength
- up to 3 weeks beam time

Status Target Production

- Selenium
 - thickness of 5 mg/cm² desired
 - planning to roll between gold layers
 - 1 µg/cm² gold backing to dissipate waste heat
- Germanium
 - production of germanium layer of >150 μg/cm² via evaporation
 - stacking of ~20 layers up to desired thickness of 3 mg/cm²
 - frst successful tests with natural germanium at IKP Cologne
 - fnal production at IKP Darmstadt in collaboration with Gabriel Schaumann

Germanium Test

Outline

- Nuclear structure and 0vββ decay
 - Infuence of deformation
 - Investigation of nuclear shapes
 - B03 photon scattering (⁸²Se/⁸²Kr, ¹⁵⁰Sm/¹⁵⁰Nd)
 - B03 electron scattering (⁷⁶Ge/⁷⁶Se)

- Nuclear structure and WIMPs
 - B03 electron scattering (¹²⁹Xe/¹³¹Xe)

Motivation

- weakly interacting massive particles (WIMPs) as candidates for dark matter
- attempt to detect via elastic and inelastic scattering off nuclei
- promising detector material liquid xenon
- XENON100 collaboration provides limits for WIMP-nucleon cross section
- measurement of form factors in ¹²⁹Xe and ¹³¹Xe
- providing crucial information for dark matter detection

130Ba ≥3.5E+14 Y 0.106% 2¢	131Ba 11.50 D €: 100.00%	132Ba >3.0E+21 Ч 0.101% 2е	133Ba 3841 D ε: 100.00%	134Ba STABLE 2.417%
129Cs 32.06 H €:100.00%	130Cs 29.21 M ε: 98.40% β-: 1.60%	131Cs 9.689 D € 100.00%	132Cs 6.480 D ε: 98.13% β-: 1.87%	133Cs STABLE 100%
128Xe STABLE 1.910%	129Xe STABLE 26.40%	130Xe STABLE 4.071%	131Xe STABLE 21.232%	132Xe STABLE 26.909%
127I STABLE 100%	128I 24.99 Μ β-: 93.10% ε: 6.90%	129Ι 1.57Ε+7 Υ β-: 100.00%	130I 12.36 H β-: 100.00%	131I 8.0252 D β-: 100.00%
126Te STABLE 18.84%	127Te 9.35 H β-: 100.00%	128Te 8.8E+18 Υ 31.74% 2β-: 100.00%	129Te 69.6 M β-: 100.00%	130Te >5E+23 Y 34.08% 2β-: 100.00%

http://www.nndc.bnl.gov/

Spin-dependent Cross Section

- spin-dependency of WIMP-nucleon interaction unknown
- if spin-dependent, only odd mass number Xe isotopes interact
- large-scale shell-model calculations
- form factors for spin-dependent interaction
- signifcant contribution from *inelastic* WIMP-nucleon scattering
- at low momentum transfer ~0.5 fm⁻¹
- range of operation of S-DALINAC

Electron Scattering Experiments at LINTOTT

- utilizing exceptional energy resolution in energy-loss mode of LINTOTTspectrometer
- measuring form factors for gs and frst excited states in ¹²⁹Xe and ¹³¹Xe at 40 and 80 keV resp.
- count rate of ~1/s at 93° for 80 MeV beam energy

Status LINTOTT Experiments

- LINTOTT-spectrometer ready for operation
- ¹²⁹Xe and ¹³¹Xe targets ready

- test beam on target within next weeks
- extended experiments either following or planned for second quarter 2018

Summery and Milestones

- achieved
 - ¹⁵⁰Sm measurement and analysis completed
 - ⁸²Se/⁸²Kr measurement completed and presented
 - ¹⁵⁰Nd measured
- in preparation
 - ¹⁰⁰Mo, ¹²⁹Xe and ¹³¹Xe purchased and ready for operation
 - ⁷⁶Ge and ⁷⁶Se target production tests
 - ¹⁰⁰Ru to be borrowed at short notice