EFT developments for nuclear reactions

Pierre Capel, Victoria Durant, Lukas Huth, Daniel Phillips, Hans-Werner Hammer and Achim Schwenk

5 October 2017

Halo nuclei

Exotic nuclear structures are found far from stability In particular halo nuclei with peculiar quantal structure :

- Light, n-rich nuclei
- Low S_n or S_{2n}

Exhibit large matter radius

due to strongly clusterised structure : neutrons tunnel far from the core and form a halo

One-neutron halo ${}^{11}\text{Be} \equiv {}^{10}\text{Be} + n$ ${}^{15}\text{C} \equiv {}^{14}\text{C} + n$

Two-neutron halo

6
He $\equiv {}^{4}$ He + n + n
 11 li $\equiv {}^{9}$ li + n + n

Proton halos are possible but less probable : ⁸B, ¹⁷F

Reactions with halo nuclei

Halo nuclei are fascinating objects but difficult to study $[\tau_{1/2}(^{11}\text{Be})=13 \text{ s}]$

 \Rightarrow require indirect techniques, new probes, like reactions :

Elastic scattering Breakup ≡ dissociation of halo from core by interaction with target

Reactions with halo nuclei

Halo nuclei are fascinating objects but difficult to study $[\tau_{1/2}(^{11}\text{Be})=13 \text{ s}]$

 \Rightarrow require indirect techniques, new probes, like reactions :

Elastic scattering Breakup ≡ dissociation of halo from core by interaction with target

Need good understanding of the reaction mechanism (i.e. a good reaction model) to know to what the probe is sensitive (i.e. what nuclear-structure information it provides) have reliable inputs for the model (i.e. optical potentials to describe the interactions with target)

We address these issues using EFT

Including halo-EFT within reaction models

- EFT description of ¹¹Be @ NLO
- Breakup calculations of ¹¹Be into ¹⁰Be+n

Optical potentials

- Double-folding potential from *x*EFT NN interactions
- ¹⁶O-¹⁶O calculations

Framework

Projectile (P) modelled as a two-body quantum system : core (c)+loosely bound nucleon (f) described by

- $H_0 = T_r + V_{cf}(\boldsymbol{r})$
- V_{cf} effective interaction describes the quantum system with ground state Φ_0

Target T assumed structureless

Interaction with target simulated by optical potentials \Rightarrow breakup reduces to three-body scattering problem :

$$\left[T_R + H_0 + V_{cT} + V_{fT}\right]\Psi(\boldsymbol{r},\boldsymbol{R}) = E_T\Psi(\boldsymbol{r},\boldsymbol{R})$$

with initial condition $\Psi(\mathbf{r}, \mathbf{R}) \xrightarrow[Z \to -\infty]{Z \to -\infty} e^{iKZ} \Phi_0(\mathbf{r})$ We use the Dynamical Eikonal Approximation (DEA) [Baye, P. C., Goldstein, PRL 95, 082502 (2005)]

Reaction model

Including halo-EFT within reaction models

- EFT description of ¹¹Be @ NLO
- Breakup calculations of ¹¹Be into ¹⁰Be+n

Optical potentials

• Double-folding potential from χ EFT NN interactions

I⁶O-¹⁶O calculations

4 Summary

Usual phenomenological description

In reaction models, projectile \equiv two-body system :

$$H_0 = T_r + V_{cf}(\mathbf{r}),$$

where V_{cn} is a phenomenological Woods-Saxon that reproduces the basic nuclear properties of the projectile (binding energy, $J^{\pi},...$)

$^{11}\text{Be} \equiv {}^{10}\text{Be} \otimes \text{n}$

¹/₂ ground state : ϵ_{1²} = -0.503 MeV In our model, seen as 1s₁/₂ neutron bound to ¹⁰Be(0⁺)
¹/₂ bound excited state : ϵ_{1²} = -0.184 MeV In our model, seen as 0p₁/₂ neutron

bound to 10 Be(0^+)

¹⁰Be-n potential

Replace the ¹⁰Be-n interaction by effective potentials in each partial wave

Use halo EFT : clear separation of scales (in energy or in distance) \Rightarrow provides an expansion parameter (small scale / large scale) along which the low-energy behaviour is expanded

[H.-W. Hammer, C. Ji, D. R. Phillips JPG 44, 103002 (2017)]

Use narrow Gaussian potentials

$$V_{li}(r) = V_0 \ e^{-\frac{r^2}{2\sigma^2}} + V_2 \ r^2 e^{-\frac{r^2}{2\sigma^2}}$$

Fit V_0 and V_2 to reproduce ϵ_{lj} and C_{lj} (@ NLO for bound states)

 σ = 1.2, 1.5 or 2 fm is a parameter used to evaluate the sensitivity of the calculations to this effective model

 ϵ_{lj} is known experimentally, but what about C_{lj} ? Fortunately, for ¹¹Be, we've got the ab initio calculation of Calci *et al.* [A. Calci *et al.* PRL 117, 242501 (2016)]

Wave functions : same asymptotics but different interior

- $\delta_{s\frac{1}{2}}$: all effective potentials are in good agreement with ab initio up to 1.5 MeV (same effective-range expansion)
- Similar results obtained for $p\frac{1}{2}$ (excited bound state)
- In higher partial waves $(lj \ge p3/2) V_{lj} = 0$

NLO analysis of ¹¹Be+Pb \rightarrow ¹⁰Be+n+Pb @ 69AMeV

 All calculations provide very similar results, for all σ, despite the difference in the internal part of the wave function ⇒ reaction is peripheral

NLO analysis of ¹¹Be+Pb \rightarrow ¹⁰Be+n+Pb @ 69AMeV

 All calculations provide very similar results, for all *σ*, despite the difference in the internal part of the wave function ⇒ reaction is peripheral

Excellent agreement with data [Fukuda *et al.* PRC 70, 054606 (2004)]
 ⇒ ab initio results used to constrain ¹¹Be EFT description are correct

NLO analysis of ¹¹Be+C \rightarrow ¹⁰Be+n+C @ 67AMeV

Exp. [Fukuda et al. PRC 70, 054606 (2004)]

- All potentials produce very similar breakup cross sections
 ⇒ still peripheral (even if nuclear dominated)
- Order of magnitude of experiment well reproduced
- Breakup strength missing at the 5/2⁺ and 3/2⁺ resonances
- \Rightarrow for this observable, the continuum must be better described

Ab initio description of ¹⁰Be-n continuum

Provides the most accurate calculation for the ¹⁰Be-n continuum

FIG. 3. The $n + {}^{10}$ Be phase shifts as a function of the kinetic energy in the center-of-mass frame. NCSMC phase shifts for the N²LO_{SAT} interaction are compared for two model spaces indicated by N_{max} .

Idea : constrain the ¹⁰Be-n potential in the reaction code beyond NLO to reproduce ab initio δ_{lj} , i.e. fit V_0 and V_2 to reproduce $\epsilon_{lj} \& \Gamma_{lj}$ (in $d_{\frac{5}{2}}$, $p_{\frac{3}{2}}$, and $d_{\frac{3}{2}}$)

$d^{5}_{2},\,p^{3}_{2}$ and d^{3}_{2} : potentials fitted to $\epsilon^{ m res}$ and Γ

- Identical $\delta_{d\frac{5}{2}}$ up to 1.5 MeV Excellent agreement with ab initio results up to 2 MeV
- Large variation in $\delta_{p\frac{3}{2}}$ and $\delta_{d\frac{3}{2}}$ obtained by effective potentials Broad potential ($\sigma = 2$ fm) cannot reproduce correct behaviour

¹¹Be+C \rightarrow ¹⁰Be+n+C @ 67AMeV (beyond NLO)

- All potentials produce similar breakup cross sections (but $\sigma = 2$ fm) Differences in p_2^3 and d_2^3 contributions due to differences in δ_{lj}
- In nuclear breakup, resonances play significant role

¹¹Be+C \rightarrow ¹⁰Be+n+C @ 67AMeV (beyond NLO)

- All potentials produce similar breakup cross sections (but $\sigma = 2$ fm) Differences in p_2^3 and d_2^3 contributions due to differences in δ_{lj}
- In nuclear breakup, resonances play significant role
- But resonant breakup not correctly described due to missing degrees of freedom in the effective model [¹⁰Be(2⁺)]

SF vs ANC

Calci *et al.* predict $S_{1s\frac{1}{2}} = 0.90$, but we use $S_{1s\frac{1}{2}} = 1...$

 \Rightarrow repeat calculations with $S_{1s\frac{1}{2}} = 0.90$ (keeping $C_{\frac{1}{2}^+} = 0.786 \text{ fm}^{-1/2}$)

SF vs ANC

Calci *et al.* predict $S_{1s\frac{1}{2}} = 0.90$, but we use $S_{1s\frac{1}{2}} = 1...$

 \Rightarrow repeat calculations with $S_{1s\frac{1}{2}} = 0.90$ (keeping $C_{\frac{1}{2}^+} = 0.786$ fm^{-1/2})

No difference \Rightarrow SF cannot be extracted from these measurements One exception : resonant breakup, where SF plays a role \Rightarrow influence of the short-range details (?)

Reaction model

Including halo-EFT within reaction models

- EFT description of ¹¹Be @ NLO
- Breakup calculations of ¹¹Be into ¹⁰Be+n

Optical potentials

- Double-folding potential from *x*EFT NN interactions
- ¹⁶O-¹⁶O calculations

Summary

Nucleus-nucleus interaction

The reaction model require nucleus-nucleus interaction $\begin{bmatrix} T_R + H_0 + V_{cT} + V_{fT} \end{bmatrix} \Psi(\mathbf{r}, \mathbf{R}) = E_T \Psi(\mathbf{r}, \mathbf{R})$

Problem : the core is usually radioactive it is difficult to find V_{cT} in the literature

Idea : using a double-folding procedure with accurate NN interactions from χ EFT

Nucleus-nucleus interaction

The reaction model require nucleus-nucleus interaction $\begin{bmatrix} T_R + H_0 + V_{cT} + V_{fT} \end{bmatrix} \Psi(\mathbf{r}, \mathbf{R}) = E_T \Psi(\mathbf{r}, \mathbf{R})$

Problem : the core is usually radioactive it is difficult to find V_{cT} in the literature

Idea : using a double-folding procedure with accurate NN interactions from χ EFT

Gezerlis *et al.* have developed local NN interactions up to N²LO [PRL 111, 032501 (2013), PRC 90, 054323 (2014)]

Based on this formalism, we build a double-folding potential Calculations by L. Huth arXiv :1708.02527

Double-folding potential

We build a double-folding potential at the Hartree-Fock level

$$V_F = \sum_{i \in A_1, j \in A_2} \left[\langle ij | v_D | ij \rangle + \langle ij | v_{EX} | ji \rangle \right]$$

using simple Fermi densities as input for the nuclei

16O-16O calculations

¹⁶O-¹⁶O potential

We build the potential

- at different orders
- for different cutoffs

Calculations by V. Durant arXiv :1708.02527

The imaginary part is assumed proportional to V_F

 $U_F(r) = (1 + N_W i) V_F(r)$ with $N_W = 0.6 - 0.8$

¹⁶O-¹⁶O elastic scattering @350 MeV

- Good agreement with experiment (no fitting parameter)
- Systematic order-by-order behaviour
- Small uncertainty related to the cutoff

¹⁶O-¹⁶O elastic scattering @350 MeV

- Good agreement with experiment (no fitting parameter)
- Systematic order-by-order behaviour
- Small uncertainty related to the cutoff
- Larger uncertainty to N_W

¹⁶O-¹⁶O low-energy fusion

- Good agreement with experiment (no fitting parameter)
- Systematic order-by-order behaviour
- Small uncertainty related to the cutoff

Summary and prospect

- Exotic nuclei studied mostly through reactions
- Mechanism of reactions with halo nuclei understood
 Can we understand what reactions probe using halo EFT? Yes
- Using Gaussian potentials, we reproduce the ANC and phase shifts predicted by ab initio calculations
- Our study shows
 - peripherality of breakup reactions
 - ab initio results (ANC & δ_{lj}) lead to agreement with data
- Optical potentials can be built by double-folding
 - Using *x*EFT NN interactions
 - Good agreement with experiment (no fitting parameter)
- EFT provides various ways to improve reaction modelling In the future :
 - Include missing degrees of freedom in ¹¹Be description
 - Study the sensitivity of the folding method to the inputs

Thanks...

to you for your attention

and to my collaborators

Victoria Durant Lukas Huth Hans-Werner Hammer Achim Schwenk

Daniel Phillips

Daniel Baye Gerald Goldstein

Dynamical eikonal approximation (DEA)

Three-body scattering problem :

$$\left[T_R + H_0 + V_{cT} + V_{fT}\right]\Psi(\boldsymbol{r},\boldsymbol{R}) = E_T \Psi(\boldsymbol{r},\boldsymbol{R})$$

with condition $\Psi \xrightarrow[Z \to -\infty]{} e^{iKZ} \Phi_0$ Eikonal approximation : factorise $\Psi = e^{iKZ} \widehat{\Psi}$

$$T_R \Psi = e^{iKZ} [T_R + vP_Z + \frac{\mu_{PT}}{2} v^2] \widehat{\Psi}$$

Neglecting T_R vs P_Z and using $E_T = \frac{1}{2}\mu_{PT}v^2 + \epsilon_0$

$$i\hbar v \frac{\partial}{\partial Z} \widehat{\Psi}(\boldsymbol{r}, \boldsymbol{b}, Z) = [H_0 - \boldsymbol{\epsilon}_0 + V_{cT} + V_{fT}] \widehat{\Psi}(\boldsymbol{r}, \boldsymbol{b}, Z)$$

solved for each *b* with condition $\widehat{\Psi} \xrightarrow[Z \to -\infty]{} \Phi_0(\mathbf{r})$ This is the dynamical eikonal approximation (DEA) [Baye, P. C., Goldstein, PRL 95, 082502 (2005)]

$p_{\frac{1}{2}}^{1}$: @ NLO potentials fitted to $\epsilon_{\frac{1}{2}}^{-}$ and $C_{\frac{1}{2}}^{-}$

Potentials fitted to $\epsilon_{0p\frac{1}{2}} = -0.184$ MeV and $C_{0p\frac{1}{2}} = 0.129$ fm^{-1/2}

Excited-state wave function

 $p_{1/2}$ phaseshifts

- Wave functions : same asymptotics but different interior
- Larger variation in $\delta_{p\frac{1}{2}}$ obtained by effective potentials Fair agreement with ab initio results up to 0.5 MeV

Summary

¹¹Be+Pb \rightarrow ¹⁰Be+n+Pb @ 69AMeV (beyond NLO)

Total breakup cross section

and p contributions

• Major differences in $p_{3/2}$ partial wave ; due to differences in $\delta_{p_{3/2}}$

- Broad potential ($\sigma = 2$ fm) produces unrealistic $p_{3/2}$ contribution
- Tiny peak at 1.27 MeV due to d₅ resonance

Summary

¹¹Be+Pb \rightarrow ¹⁰Be+n+Pb @ 69AMeV (beyond NLO)

• Major differences in $p_{3/2}$ partial wave ; due to differences in $\delta_{p_{3/2}}$

- Broad potential ($\sigma = 2 \text{ fm}$) produces unrealistic $p_{3/2}$ contribution
- Tiny peak at 1.27 MeV due to $d_{\frac{5}{3}}$ resonance not enough to match data
- Good agreement with data [Fukuda *et al.* PRC 70, 054606 (2004)] Best agreement with $\sigma = 1.2$ and 1.5 fm, whose $\delta_{p3/2} \sim \delta_{3/2^-}^{ab initio}$

Role of $\delta_{p3/2}$

Calculations repeated with different potentials (σ = 1.2, 1.5 or 2 fm) but in $p_{3/2}$, where σ = 1 fm (perfect agreement with ab initio)

All potentials provide the same $p_{3/2}$ contribution

- confirms the peripherality of reaction (no influence of the internal part)
- shows the significant role of phaseshifts

LO, NLO and beyond

Calculations repeated with σ = 1.2 fm @ LO, NLO and beyond

• Similar $p_{3/2}$ contributions, consistent with $\delta_{p3/2} = 0$

• Significant change in $p_{1/2}$ contribution due to excited bound state

¹¹Be+Pb \rightarrow ¹⁰Be+n+Pb @ 69AMeV

Total breakup cross section and *p* contributions

Folded with experimental resolution

• Major differences in $p_{3/2}$ partial wave ; due to differences in $\delta_{p_{3/2}}$

• Broad potential ($\sigma = 2$ fm) produces unrealistic $p_{3/2}$ contribution

¹¹Be+Pb \rightarrow ¹⁰Be+n+Pb @ 69AMeV

Total breakup cross section and *p* contributions

Folded with experimental resolution

• Major differences in $p_{3/2}$ partial wave ; due to differences in $\delta_{p_{3/2}}$

- Broad potential ($\sigma = 2 \text{ fm}$) produces unrealistic $p_{3/2}$ contribution
- Excellent agreement with experiment