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Outline

» NS merger - motivation and overview
» Gravitational waves
» EoS constraints
— dominant postmerger GW frequency = Radius measurement
— collapse behavior = Maximum mass of NSs (very high density regime)
» GW data analysis

» Outlook: GW astereoseismology
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Overview - NS mergers

» Short gamma-ray bursts = high-energy astrophysics / gamma-ray astronomy
» Site for the rapid neutron-capture process = heavy element formation
» Electromagnetic transients — “time-domain astronomy”

» Gravitational wave emitters = EoS of nuclear matter

» Btw: all these aspects are also related to NS-black hole mergers



Short gamma-ray bursts

» Observed since the 70ies

» Intense flashes of gamma rays with duration <~2 secs with
10°°... 10°? erg/s

» random, non-repeating, isotropic at cosmological distances

» (long GRBs with duration >~2 secs produced by collapse of
massive star - confirmed by supernova association =
lightcurve observed; tend to be somewhat softer than Swift
short bursts)

» produced by jets (baryon-poor relativistic beamed outflow) forming from a BH-torus
system after NS merger or NS-BH merger = beamed emission

» Afterglow (=interaction of jet with ambient medium) routinely observed as follow up
with X-ray, optical, radio telescopes

» Some GRBs show X-ray plateau emission ~100 ... 1000 seconds



Short gamma-ray bursts

>

Arguments for mergers as progenitors:

- energetics and time scales

- no supernova association (excluded with very good limits)
- occurrence in star-forming and elliptical galaxies

- off-center from host galaxies

- rates (as far as we can estimate rates)

Smoking gun: coincident detection of sGRB and GWs

— estimate probability to see both simultaneously (assume
opening angle ~10 deg.)

Short gamma-ray burst
(<2 seconds’ duration)

.
Stars* in ‘\
a compact

binary system -
begin to spiral
inward....
.
..eventually

colliding.

The resulting torus
has at its center

a powerful
black hole.

*Possibly neutron stars.

Covino 2007



Off-axis emission

» May increase likelihood of coincident measurements

Extended lateral
To observer  structure of jet (the “sheath”)

~ Luminous
core

Jet pre-breakout
P . Dynamical ejecta

Post-merger compact object
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e.g. Kathirgamaraju et al. 2017
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Nucleosynthesis

» Origin of heavy elements formed by rapid-neutron capture process
» Astrophysical production site of rapid neutron-capture elements not yet identified

- mergers provide favorable conditions: ejecta neutron rich, fast expanding ejecta (typically ~10-2
MSUI’])

- many alternative scenarios, e.g. core-collapse supernovae

» R-process elements observed in stellar spectra of of all metalicities especially metal-poor (=old)
stars

— points to certain robustness and universality of r-process
— understand galactic chemical evolution
» Open questions

- details of r-process path (ejecta properties, e.g. masses, temperatures, neutrinos, different types
of ejecta: dynamical vs. secular, importance of fission)

- nuclear physics models
- overall production / dominant source ? = GW / em observations will settle rate

» Many groups involved from astro side and nuclear physics, e.g. in DA Arcones, Martinez-Pinedo, ...



Electromagnetic transients

»n «

» Synonyms: “kilonova”, “macronova”

» Powered by radioactive decays during/after r-process — heat expanding ejecta
» Ejecta initially opaque = transparent on time scale of 1 d = peak luminosity

» Thermal emission in UV, optical, infrared

» Targets for time-domain astronomy

- blind searched by surveys: Large Synoptic Survey Telescope (LSST), Palomar
Transient Factory (PTF), BlackGEM, ....

- triggered searches (by GW candidate, sGRB): Hubble Space Telescope, Very Large
Telescope, ...

» Potential observations of radioactively powered transients in aftermath of sGRBs, e.g.
GRB130603b



Electromagnetic transients - outlook

» Electromagnetic counterpart to GW event = increases confidence and sensitivity of
GW searches by providing precise sky position

» Understand zoo of astronomical transient phenomena

» Rate of NS mergers

» Reveal details of nucleosynthesis: ejecta masses, velocities, abundances, ...
— Rate * ejecta mass = total production

— Is all gold produced in NS mergers?

» Particularly rewarding: multi-messenger astronomy
- GW = binary masses, possibly EoS

- em emission (SGRB / kilonova): sky position, dynamics of merger, ejecta masses



Gravitational waves

» NS mergers are strong emitters of GWs — next type of source to be detected

» Detections will clarify rate and binary masses of population

» GWs from NS mergers bear potential to constrain EoS of high-density matter
- stiffness at saturation and beyond
- hyperon puzzle

- more exotic phases (QCD phase transition)
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Gravitational waves



GW150914: a BH-BH merger - first direct
observation of GWs

Hanford, Washington (H1) Livingston, Louisiana (L1)

— Numerical relativity — Numerical relativity
Rec owstructed (wavelet) Rec omtlucted (wavelet)
Rt-comatrurtpd (templatp) RPcmnstlurted (template\

Frequency (Hz)
Normalized amplitude

September 14, 2015 Abbott et al. 2016

Plus three more BH mergers



GWs from BH mergers

» First BH binaries detected

» GW signal reveals masses - orbital motion
— any orbiting binary will produce a chirping signal = merger

> Rates
— 4 BH mergers vs O NS mergers does not imply that rate of NS mergers is lower
— NSM rate per volume is expected to be higher

Black Holes of Known Mass

Primary black hole mass m,

Secondary black hole mass m,

70
Chirp mass M
Total mass M i LIGO
Final black hole mass M 48,712 50
Radiated energy E, 4 :_ 4 —
Peak luminosity £ pex 3.1717 x 10%%erg s~ f;\; * Y | ™\ 1
Effective inspiral spin parameter y.s -0.121931 = 30 \ \“/’ A
Final black hole spin a; 0.641077 3 X-Ray Studies e S oM
Luminosity distance D; 8807350 Mpc ? i quo;
Source redshift z O w0000 9 =
- 0 el & 00 0 O O ( LVT151012

0 GW151226

GW170104 (Abbott et al. 2017) + GW170814: 25+31 solar masses



. . Abott et al. 2016
Detector characteristics
Sensitivity (noise) curve of Ad. LIGO detectors
» Fabry-Perot Michelson interferometer during first observing run (O1) in 2016

» Different sources of noise: thermal, seismic,
shot noise, ...

» Sensitive to GWs with frequencies
between a few 10 Hz to a few kHz

— frequency range determines types of
observable sources (orbital/dynamical
time scales)
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mass BHSs
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» Design sensitivity within next years (a
few factors higher), more instruments
become operational

7 o Frequency (Hz)
Seismic noise Photon shot

» Challenge: GW data analysis, e.g., Thermal noise
- matched filtering: template based — requires complete model of expected signals
- unmodelled searches

— some proper statistical argument that some pattern was not a random fluctuation



Future plans

Advanced LIGO
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Future

» More detectors become operational with higher sensitivity = network leads to higher
overall sensitivity

» Plans for 3rd generation instruments and upgrades of current detectors:
- Einstein Telescope
- Voyager
- Cosmic Explorer
- LIGO +
(all similar frequency band: 10 Hz to several kHz, but different sensitivity)

» Laser Interferometer Space Antenna (LISA) not before 2034 — space borne GW detector
for low frequencies (0.1 mHz ... 1 Hz) = supermassive BHs, white dwarfs, ...

» Pulsar Timing Arrays (ongoing efforts) nanoHertz — supermassive BHs



What's next? - NS mergers?

namre International weekly journal of science

Home | News & Comment ‘ Research | Careers & Jobs | Current Issue | Archive ‘ Audio & Video | For Au

News & Comment September

Rumours swell over new kind of gravitational-wave
sighting

Gossip over potential detection of colliding neutron stars has astronomers in a tizzy.

Davide Castelvecchi
24 August 2017 | Updated: 25 August 2017, 25 August 2017
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Neutron-star mergers and the nuclear EoS



EoS of NS matter

» Mass-radius relation (of non-rotating NSs) and EoS are uniquely linked

through Tolman-Oppenheimer-Volkoff (TOV) equations
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future

=> NS properties (of non-rotating stars) and EoS properties are equivalent !!!

=> in particular we would like to measure radius of fixed mass, e.g. R1 35, R1 ¢4



Merger stages



Dynamics

Inspiral of NS binary - Point-particle inspiral
analog to BH binary
~100 Myrs
>

Neutron star merger

dependent on
EoS, My
ms ms

Prompt formation of a Formation of a differentially
BH + torus rotating massive NS
dependent on
EoS, My, N1 00 ms
Rigidly rotating Delayed collapse
(supermassive) NS to a BH + torus

Review: e.g. Faber &
Rasio 2012



Dynamics

Inspiral of NS binary

~10P° .
100 |\/Iyrs l - GVV N b|naw
T masses, EoS

‘ Neutron star merger
’/,/’, dependent on
EoS, M

/n. ms \.» GW —EoS

Prompt formation of ¢ ‘ Formation of a differentially
BH + torus rotating massive NS |

dependent on
EoS, M 16-100 ms

Delayed collapse
to a BH + torus

I T

Rigidly rotating
(supermassive) NS




Simulation: 1.35+1.35 M,

,_]_ i)

Density evolution in equatorial plane, Shen EoS

Only late inspiral phase and (post-)merger phase covered by simulation






Goal: EoS from GWs

Two complementary strategies:

» Tidal effects during the inspiral = accelerate inspiral compared to BH-BH

- strong signal - weaker EoS effect

» Oscillations of the postmerger remnant

- strong EoS impact - weaker signal (at higher frequencies)

» Keep in mind: binary masses are easy to measure



EoS effects during inspiral



Inspiral

» Orbital phase evolution affected by NS radius (precisely tidal deformability) - only
during last orbits before merging

» Difference in phase between NS merger and point-particle inspiral:

t[lllwtm}
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EoS impact measured by tidal
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Soft E0S

e.g. Read et al. 2013 TMerger time of point particle

Challenge: construct faithful templates for data analysis



Tidal deformability - combining many signals

7, =002 Injected value SQM3
Gaussian mass dlistribution : Injected value H4
Injected value MS1
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Radius measurements from the postmerger
phase



Postmerger

Earlier inspiral EoS

1.35-1.35 M_, , 20 Mpc

-22

h+ at 20 Mpc

inspiral

Dominant postmerger oscillation frequency fpeak

Very characteristic (robust feature in all models)



Every data point a single simulation of a 1.35-1.35 Mg, binary

all 1.35-1.35 simulations

M1/I\/I2 known fro
inspiral

characterize EoS by radius of
nonrotating NS with 1.35 M_

Bauswein et al. 2012

Pure TOV property => Radius measurement via fpeak

— Empirical relation between GW frequency and NS radius ( = our EoS parameter)

Important: Simulations for the same binary mass, but with varied EoS



all 1.35-1.35 simulations

3 M. /M_ known from _
xx . g :(i‘%‘_-\‘
\.\Ml‘.

inspiral

X x
X

characterize EoS by radius of
nonrotating NS with 1.6 M

sun

Bauswein et al. 2012

Pure TOV/EOS property => Radius measurement via f,e,

Fit R(1.6 M) = 1.1 fa — 8.6 faw + 28.

Important: Simulations for the same binary mass, just with varied EoS



Binary mass variations

M. . =1.1665M
su

chirp n

asym. mergers blue

Different total binary masses

, Fixed chirp mass (asymmertic 1.2-1.5
(symmetric)

Mgyn binaries and symmetric 1.34-
1.34 Mg, binaries)

Bauswein et al. 2012, 2016



Background
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f-mode frequency of nonrotating stars:
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Stergioulas et al. 2011




Data analysis



Data analysis - prove of principle

Model waveforms hidden in

O APR rescaled LIGO noise

7 DD2
A DD23 351
< NL3 Peak frequency recovered with
I3.8M; .
S SFHo burst search analysis
SFHx
< Shen Error ~ 10 Hz

cOOV AERO
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ilr'.. covend [ Hz ]
¥

hIAPR' For signals within ~10-25 Mpc
hsAPR'

¢ hsAPR® .

s HIAPR* => for near-by event radius
:ﬂ[ﬁ;f;j measurable with high precision
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2000 2200 2400 2600 2800 3000 3200 3400 Proof-of-principle study
furet [Hz] — improvements likely

Clark et al. 2014




Data analysis

» Principal Component analysis

Target (TM1 1.35+1.35)
Reconstruction AM=1.00

h.(t) @ 50 Mpc

|
PONDPODO
h_ (t) @ 50 Mpc
cooooooH
PuONMODO

Coo0o000OH

0.005 0.010
Time [s]

-24 N\
1000 1500 2000 2500 3000 3500 4000
Frequency [Hz]

Excluding recovered waveform from catalogue

Instrument
alLICO
A

LV
ET-D
(stacking results, e.g. Yang et al., Bose et al.) CE

Target (TM1 1.35+1.35)
Reconstruction M=0.96

0.010

2500 3000 3500 4000
Frequency [Hz]




Collapse behavior of the merger remnant



Mtot — 34 M@

-
Shen EoS
Mtot — 35 M@

>

Collapse behavior:

Prompt vs. delayed (/no) collapse

Relevant for:

EoS constraints through M5 measurement

Conditions for short GRBs

Mass ejection

Electromagnetic counterparts powered by thermal emission



Collapse behavior

A Total binary mass M,

Prompt collapse to BH

Threshold binary
mass M

thres

Inspiral / —_—
\

No or delayed collapse to BH

+ strong postmerger
GW emission

EoS dependent - somehow M__ should play a role

- ... from observations we can determine M2y, Rmax: Pmax



Key quantity: Threshold binary mass M. for prompt BH collapse

Fractional increase of M__

k =

M

M

thres

max

\Y

thres

with k = k(C

m

(compactness of TOV

ax)

C..=GM__/(c*R

= K™ Mpa

max)

maximum-mass configuration)

=>M =M \

thres thres(

max’

R

max)

024 026 028
Cmax Bauswein et al. 2013

<+— From simulations with different M,

~— 10V property of employed EoS




Constrain M.,

Measure several NS mergers with different Mgt - check if postmerger GW emission present

— Mihres €stimate

Radius e.g. from postmerger frequency Mihres = (—3.38% + 2.43) M ax
Invert fit
G MmaX
Minhres = <_36 > ‘|‘238> M ax
c‘ Rig

— Mmax

Note: already a single/few measurement could

provide interesting constraints !!!

Mihres cOnstraints also from GRB, em counterparts, ...

022 024 026 028 03
G G

max 1.6




One more idea:

maybe we get more events but not with high binary masses



Alternative: f,,.,x dependence on total binary mass

(every single line
corresponds to a
specific EoS

— only one line can
be the true EoS)

M
fpeak ~ ﬁ

Bauswein et al. 2014

Dominant GW frequency monotone function of M, ,
Threshold to prompt BH collapse shows a clear dependence on M, ,

(dashed line)



from two measurements of fpeak at moderate M,

Maximum-mass
TOV properties
>

by extrapolation
of foeak (Mot

774
VAP

L A A LA
LA A LA
EAA A AT A LA A S AL AT

LT

-

Radius at
lower
NEEEES
from fpeak

(final error will depend on EoS and extact systems measured)

Note: M

thres

may also be constrained from prompt collapse directly

Bauswein et al. 2014



Outlook:
GW astereoseismology



Generic GW spectrum

* Up to three pronounced features in the postmerger spectrum (+ structure at higher
frequencies)

1.35-1.35 Msun DD2 EoS

Interpretation and exact dependencies of secondary frequencies still under debate (cf.
Frankfurt group)



Quasi-radial mode

e Central lapse function shows two frequencies (~500 Hz and ~1100 Hz) — clear peaks in FFT

» Add quasi-radial perturbation = re-excite quasi-radial mode => f; = 1100 Hz

« Confirmed by mode analysis — radial eigen function at f,

DD2 1.35-1.35 M_
sun

quasi-radial
re—excited

Bauswein et al. 2015

Stergioulas et al. 2011

Could consider also size of the remnant, rhomayx, ...

Note: additional low-frequency oscillation (500 Hz) also in GW amplitude (explained later)



Generic GW spectrum

* Interaction between dominant quadrupolar mode and quasi-radial oscillation
produced peak at fyo = feak — fo (see Shibata & Taniguchi 2006, Stergioulas et

al. 2011)



Antipodal bulges (spiral pattern)

-10

0
¥ [km]

t=13.42 ms

t=13.18 ms

t=14.22 ms

Bauswein et al. 2015

Orbital motion of
antipodal bulges slower
than inner part of the
remnant (double-core
structure)

Spiral pattern, created
during merging lacks
behind

Orbital frequency:
1/1ms — generates GW
at 2 kHz I!!

Present for only a few
ms / cycles



Generic GW spectrum

LoV ¢

\ spiral

* Orbital motion of antipodal bulges generate peak at fq;,



Different binary masses

1.2-1.2M 1.2-1.2

sun y a sun
1.35-1.35M_ 1.35-1.35M_
1.5-15M , _ 1.5-1.5M

sun A SUn

1
0.18 013 0.14 015 0.16 0.17 0.18
compactness C

Bauswein et al. 2015 Dashed line from Takami et al. 2014

» for the individual secondary frequencies there are relations between C and the
frequency for fixed binary masses (solid lines)

» (binary masses will be known from GW inspiral signal)

» mass-dependent relations for secondary peaks - not all equally strong!



Secondary peaks

» Strength of secondary peaks leads to classification scheme of postmerger spectra and
dynamics — 3 types of spectra

» Origin and dependencies of secondary peaks still under debate
» More features to be identified

» Detection of secondary features challenging



Survey of GW spectra

» Considering different models (EoS, M.): 3 types of spectra depending on
presence of secondary features (dominant f,e, is always present)

Bauswein & Stergioulas 2015



Summary

» NS mergers are multi-messenger events: r-process nucleosynthesis, kilonovae, short
gamma-ray bursts, gravitational waves = highly rewarding

» GWs from NS mergers expected any time
» EoS impact on inspiral

» Dominant postmerger oscillation frequency scales with NS radius = accurate and
robust measurements

» GW data analysis ready for the postmerger (still improving)
» Collapse behavior of merger remnant = maximum mass of NSs (+ further properties)

» Secondary peaks towards GW astereoseismology = more details of the EoS
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