Recent developments in the study of dense matter

Status report on project B05: Nuclear matter equation of state for astrophysical applications

Marc Leonhardt

Institut für Kernphysik, Technische Universität Darmstadt

with

Martin Pospiech and Jens Braun,

Christian Drischler, Corbinian Wellenhofer and Kai Hebeler

2nd CRC 1245 Workshop Schloss Waldthausen, 2017

QCD phase diagram: <u>Neutron stars and the cold dense EoS</u>

TECHNISCHE UNIVERSITÄT DARMSTADT

QCD phase diagram: Neutron stars and the cold dense EoS

TECHNISCHE UNIVERSITÄT DARMSTADT

QCD phase diagram: Neutron stars and the cold dense EoS

TECHNISCHE UNIVERSITÄT DARMSTADT

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt

Outline

- Chiral effective field theory (at lower densities)
 - Efficient Monte-Carlo framework for MBPT
 - Nuclear thermodynamics from χEFT interactions
- Functional renormalization group (at higher densities)
 - Fierz-complete four-quark interactions in hot and dense QCD (2 flavors)
 - Ground state properties and phases
- Conclusions and outlook

[Drischler, Hebeler, Schwenk, in preparation] [Wellenhofer, Holt, Kaiser, Weise; '14, '15, '16] [Braun, ML, Pospiech, arXiv:1705.00074] [Braun, ML, Pospiech, in preparation] Corbinian Wellenhofer

Martin Pospiech

Christian

3

Drischler

QCD phase diagram: Neutron stars and the cold dense EoS

SFB

Nuclear matter EOS for astrophysical applications Chiral effective field theory

... and ongoing work at N^4LO , N^5LO , ...

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, ...

5

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt

Nuclear matter EOS for astrophysical applications **Efficient Monte-Carlo framework for MBPT**

[Drischler, Hebeler, Schwenk, in preparation]

- based on analytical expressions
- NN, 3N, 4N forces @ N³LO (no PW's)
- MBPT for up to 4th order • (automatic code generation)

Nuclear matter EOS for astrophysical applications Efficient Monte-Carlo framework for MBPT

[[]Drischler, Hebeler, Schwenk, in preparation]

- based on analytical expressions
 - NN, 3N, 4N forces @ N³LO (no PW's)
 - MBPT for up to 4th order (*automatic* code generation)
- aim: guiding fits of next-generation interactions in terms of saturation
- fit 3N LECs c_D/c_E @ N³LO
 to ³H and study saturation

Nuclear matter EOS for astrophysical applications Efficient Monte-Carlo framework for MBPT

[Drischler, Hebeler, Schwenk, in preparation]

- based on analytical expressions
 - NN, 3N, 4N forces @ N³LO (no PW's)
 - MBPT for up to 4th order (*automatic* code generation)
- aim: guiding fits of next-generation interactions in terms of saturation
- fit 3N LECs c_D/c_E @ N³LO
 to ³H and study saturation

Nuclear thermodynamics from chiral effective field theory interactions

Figure: Internal energy of pure neutron matter (δ=1; VEoS: virial expansion)

[Wellenhofer, Holt, Kaiser, Weise, PRC **89**, 064009 (2014)] [Wellenhofer, Holt, Kaiser, PRC **92**, 015801 (2015)] [Wellenhofer, Holt, Kaiser, PRC **93**, 055802 (2016)] [Schwenk, Horowitz, Phys. Lett. **B638**, 153-159 (2006)] Compute thermodynamic properties of nuclear matter

- Needed for neutron star and supernova simulations
- Large parameter space: temperature T, nucleon density ρ, isospin asymmetry δ=1-2Y (where Y is the proton fraction)

• **Good benchmark results** e.g.: good agreement with virial

expansion at low densities (see Figure)

• Future work:

single-particle properties, improved calculations (better uncertainty estimates), ...

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt

QCD phase diagram: Neutron stars and the cold dense EoS

From high to low energies in QCD

TECHNISCHE UNIVERSITÄT DARMSTADT

Functional renormalization group (FRG) From high to low energies in QCD

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt

TECHNISCHE UNIVERSITÄT DARMSTADT

$$S[\bar{\psi},\psi] = \int_x \left\{ \bar{\psi}i\partial\!\!\!/\psi + \frac{1}{2}\bar{\lambda}_{(\sigma-\pi)} \left[(\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5\vec{\tau}\psi)^2 \right] \right\}$$

TECHNISCHE UNIVERSITÄT DARMSTADT

$$S[\bar{\psi},\psi] = \int_{x} \left\{ \bar{\psi}i \partial \!\!\!/ \psi + \frac{1}{2} \bar{\lambda}_{(\sigma-\pi)} \left[(\bar{\psi}\psi)^{2} - (\bar{\psi}\gamma_{5}\vec{\tau}\psi)^{2} \right] \right\}$$
Partial bosonization
$$\sigma \sim \bar{\psi}\psi$$

$$\pi \sim \bar{\psi}\gamma_{5}\vec{\tau}\psi$$

$$Symmetry of the ground state$$

$$U_{B} \sim \frac{1}{\bar{\lambda}_{(\sigma-\pi)}} (\sigma^{2} + \pi^{2}) + \dots$$

TECHNISCHE UNIVERSITÄT DARMSTADT

$$S[\bar{\psi}, \psi] = \int_{x} \left\{ \bar{\psi} i \partial \psi + \frac{1}{2} \bar{\lambda}_{(\sigma-\pi)} \left[(\bar{\psi}\psi)^{2} - (\bar{\psi}\gamma_{5}\vec{\tau}\psi)^{2} \right] \right\}$$
Partial bosonization
$$\sigma \sim \bar{\psi}\psi$$

$$\vec{\pi} \sim \bar{\psi}\gamma_{5}\vec{\tau}\psi$$
Symmetry of the
ground state
$$U_{B} \sim \frac{1}{\bar{\lambda}_{(\sigma-\pi)}} (\sigma^{2} + \pi^{2}) + \dots$$

$$U_{B} \sim \frac{1}{\bar{\lambda}_{(\sigma-\pi)}} (\sigma^{2} + \pi^{2}) + \dots$$

$$\frac{U_{B}}{\bar{\lambda}_{(\sigma-\pi)}} \int_{k_{0}} \rightarrow 0$$

$$\frac{1}{\bar{\lambda}_{(\sigma-\pi)}} \int_{k_{0}} \rightarrow 0$$

$$\vec{\pi} \sim \text{Goldstone bosons}$$

TECHNISCHE UNIVERSITÄT DARMSTADT

$$S[\bar{\psi}, \psi] = \int_{x} \left\{ \bar{\psi}i\partial \psi + \frac{1}{2}\bar{\lambda}_{(\sigma-\pi)} \left[(\bar{\psi}\psi)^{2} - (\bar{\psi}\gamma_{5}\vec{\tau}\psi)^{2} \right] \right\}$$
Partial bosonization
 $\sigma \sim \bar{\psi}\psi$
 $\pi \sim \bar{\psi}\gamma_{5}\vec{\tau}\psi$
Symmetry of the
 $ground state$
 $U_{B} \sim \frac{1}{\bar{\lambda}_{(\sigma-\pi)}}(\sigma^{2} + \pi^{2}) + \dots$

$$U_{B} \rightarrow 0$$

$$\frac{1}{\bar{\lambda}_{(\sigma-\pi)}} |_{k_{0}} \rightarrow 0$$

$$\int_{\pi} \frac{1}{\bar{\lambda}_{(\sigma-\pi)}} |_{k_{0}} \rightarrow 0$$

$$\int_{\pi} \frac{1}{\bar{\lambda}_{(\sigma-\pi)}} |_{k_{0}} \rightarrow 0$$
Goldstone bosons
$$\int_{\pi} \frac{1}{\bar{\lambda}_{(\sigma)}} \int_{\pi} \frac$$

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt

$$\Gamma_{k}[\bar{\psi},\psi] = \int_{x} \left\{ \bar{\psi}(\mathrm{i}Z_{\parallel}\gamma_{0}\partial_{0} + \mathrm{i}Z_{\perp}\gamma_{i}\partial_{i} - \mathrm{i}Z_{\mu}\mu\gamma_{0})\psi + \frac{1}{2}\sum_{i}\bar{\lambda}_{i}\mathcal{L}^{i}_{(\bar{\psi}\psi)^{2}} \right\}$$

In total 20 channels meet symmetry constraints

Fierz identities

Fierz-complete basis: 10 channels

$$\mathcal{L}_{(\bar{\psi}\psi)^2}^{(\sigma-\pi)} = \left(\bar{\psi}\psi\right)^2 - \left(\bar{\psi}\gamma_5\vec{\tau}\psi\right)^2$$

Ĺ

$$\underset{(\bar{\psi}\psi)^2}{^{\rm csc}} \sim (\mathrm{i}\bar{\psi}\gamma_5\tau_A t_c^{A'}\mathcal{C}\bar{\psi}^T)(\mathrm{i}\psi^T\mathcal{C}\gamma_5\tau_A t_c^{A'}\psi)$$

[Rapp, Schäfer, Shuryak, Velkovsky, 1998]

 ↔ formation of chiral condensate

 $\leftrightarrow \text{ formation of } \\ \text{diquark condensate} \\$

13

SFB 1245

[Braun, ML, Pospiech '17]

 $J^{P} = 0^{+}$

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt

+ 8 more interaction channels

- Only $\lambda_{(\sigma-\pi)}(\Lambda)$ assumes finite value as inspired by gluon-induced four-quark flows
- UV value tuned so that specific symmetry-breakdown scale k_0 is obtained which corresponds to a quark mass of 300 MeV in the vacuum limit

RG flow of four-quark interactions

Qualitative behavior and the effect of external parameters

TECHNISCHE UNIVERSITÄT DARMSTADT

- Only $\lambda_{(\sigma-\pi)}(\Lambda)$ assumes finite value as inspired by gluon-induced four-quark flows
- UV value tuned so that specific symmetry-breakdown scale k_0 is obtained which corresponds to a quark mass of 300 MeV in the vacuum limit

RG flow of four-quark interactions

Qualitative behavior and the effect of external parameters

TECHNISCHE UNIVERSITÄT DARMSTADT

- Only $\lambda_{(\sigma-\pi)}(\Lambda)$ assumes finite value as inspired by gluon-induced four-quark flows
- UV value tuned so that specific symmetry-breakdown scale k_0 is obtained which corresponds to a quark mass of 300 MeV in the vacuum limit

- Only $\lambda_{(\sigma-\pi)}(\Lambda)$ assumes finite value as inspired by gluon-induced four-quark flows
- UV value tuned so that specific symmetry-breakdown scale k_0 is obtained which corresponds to a quark mass of 300 MeV in the vacuum limit

RG flow of four-quark interactions

Qualitative behavior and the effect of external parameters

- Only $\lambda_{(\sigma-\pi)}(\Lambda)$ assumes finite value as inspired by gluon-induced four-quark flows
- UV value tuned so that specific symmetry-breakdown scale k_0 is obtained which corresponds to a quark mass of 300 MeV in the vacuum limit

Fixed-point structure and patterns of symmetry breaking

TECHNISCHE UNIVERSITÄT DARMSTADT

Ansatz one-channel approximation

$$\Gamma_k[\bar{\psi},\psi] = \int_x \left\{ (\text{kinetic term}) + \frac{1}{2}\bar{\lambda}_{(\sigma-\pi)} \left[(\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5\vec{\tau}\psi)^2 \right] \right\}$$

Fixed-point structure and patterns of symmetry breaking

TECHNISCHE UNIVERSITÄT DARMSTADT

Ansatz two-channel approximation

$$\Gamma_{k}[\bar{\psi},\psi] = \int_{x} \left\{ (\text{kinetic term}) + \frac{1}{2}\bar{\lambda}_{(\sigma-\pi)}(\sigma-\pi) + \frac{1}{2}\bar{\lambda}_{\text{csc}}(\text{csc}) \right\}$$

Fixed-point structure and patterns of symmetry breaking

TECHNISCHE UNIVERSITÄT DARMSTADT

Ansatz two-channel approximation

$$\Gamma_{k}[\bar{\psi},\psi] = \int_{x} \left\{ (\text{kinetic term}) + \frac{1}{2}\bar{\lambda}_{(\sigma-\pi)}(\sigma-\pi) + \frac{1}{2}\bar{\lambda}_{\text{csc}}(\text{csc}) \right\}$$

Fixed-point structure and patterns of symmetry breaking

TECHNISCHE UNIVERSITÄT DARMSTADT

Fixed-point structure and patterns of symmetry breaking

TECHNISCHE UNIVERSITÄT DARMSTADT

Fierz-complete ansatz

Fixed-point structure and patterns of symmetry breaking

TECHNISCHE UNIVERSITÄT DARMSTADT

Fierz-complete ansatz $\Gamma_{k}[\bar{\psi},\psi] = \int_{x} \left\{ (\text{kinetic term}) + \frac{1}{2} \sum_{i} \bar{\lambda}_{i} \mathcal{L}^{i}_{(\bar{\psi}\psi)^{2}} \right\} \text{ comprises all 10 channels}$

Conclusions and outlook

TECHNISCHE UNIVERSITÄT DARMSTADT

Chiral effective field theory at lower densities

- Efficient Monte-Carlo framework for MBPT (automatic code generation; 4th order)
- Improve fits of LECs by guiding in terms of nuclear saturation
- Nuclear thermodynamics from χ EFT interactions: $T,\,
 ho,\,\delta$

<u>Outlook</u> Apply saturation guided fitting to next-generation interactions, extract single-particle properties from nuclear thermodynamics

Functional renormalization group at higher densities

- First Fierz-complete study of effective action
- Importance of Fierz-completeness to probe the regime at high quark chemical potential and low temperature
- Forming of diquark condensate (color superconducting phase)
- <u>Outlook</u> Inclusion of dynamic gauge fields (equations worked out) and first estimate of EoS, work in progress.

Backup

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt

Difermion-type degrees of freedom

Difermion-type degrees of freedom

Difermion-type degrees of freedom

Backup

$$\mathcal{L}_{(\bar{\psi}\psi)^2}^{(\mathrm{S}+\mathrm{P})^{\mathrm{adj}}_{-}} \mathcal{L}_{(\bar{\psi}\psi)^2}^{(\mathrm{V}+\mathrm{A})_{\parallel}} \mathcal{L}_{(\bar{\psi}\psi)^2}^{(\mathrm{V}+\mathrm{A})_{\perp}} \mathcal{L}_{(\bar{\psi}\psi)^2}^{(\mathrm{V}-\mathrm{A})_{\parallel}} \mathcal{L}_{(\bar{\psi}\psi)^2}^{(\mathrm{V}-\mathrm{A})_{\perp}} \mathcal{L}_{(\bar{\psi}\psi)^2}^{(\mathrm{V}+\mathrm{A})_{\parallel}} \mathcal{L}_{(\bar{\psi}\psi)^2}^{(\mathrm{V}-\mathrm{A})_{\perp}} \mathcal{L}_{(\bar{\psi}\psi)^2}^{(\mathrm{V}-\mathrm{A})_{\perp}} \mathcal{L}_{(\bar{\psi}\psi)^2}^{(\mathrm{V}-\mathrm{A})_{\parallel}} \mathcal{L}$$

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt

,

TECHNISCHE UNIVERSITÄT DARMSTADT

$$\Gamma_{k}[\bar{\psi},\psi] = \int_{x} \left\{ \bar{\psi}(\mathrm{i}Z_{\parallel}\gamma_{0}\partial_{0} + \mathrm{i}Z_{\perp}\gamma_{i}\partial_{i} - \mathrm{i}Z_{\mu}\mu\gamma_{0})\psi + \frac{1}{2}\sum_{i}\bar{\lambda}_{i}\mathcal{L}^{i}_{(\bar{\psi}\psi)^{2}} \right\}$$

In total 20 channels meet symmetry constraints

Fierz identities

Fierz-complete basis: 10 channels

$$\begin{aligned} \mathbf{U}_{A}(1) \text{ breaking channels:} \\ \mathcal{L}_{(\bar{\psi}\psi)^{2}}^{(\sigma-\pi)} &= \left(\bar{\psi}\psi\right)^{2} - \left(\bar{\psi}\gamma_{5}\vec{\tau}\psi\right)^{2} \\ \mathcal{L}_{(\bar{\psi}\psi)^{2}}^{\mathrm{csc}} &\sim \left(\mathrm{i}\bar{\psi}\gamma_{5}\tau_{A}t_{c}^{A'}\mathcal{C}\bar{\psi}^{T}\right)\left(\mathrm{i}\psi^{T}\mathcal{C}\gamma_{5}\tau_{A}t_{c}^{A'}\psi\right) \quad J^{P} = 0^{+} \\ \mathcal{L}_{(\bar{\psi}\psi)^{2}}^{\mathrm{det}} &= \left(\bar{\psi}\psi\right)^{2} + \left(\bar{\psi}\gamma_{5}\psi\right)^{2} - \left(\bar{\psi}\vec{\tau}\psi\right)^{2} - \left(\bar{\psi}\gamma_{5}\vec{\tau}\psi\right)^{2} \\ \mathcal{L}_{(\bar{\psi}\psi)^{2}}^{\mathrm{(S+P)}_{-}^{\mathrm{adj}}} &= \left(\bar{\psi}T^{a}\psi\right)^{2} - \left(\bar{\psi}\gamma_{5}\vec{\tau}T^{a}\psi\right)^{2} + \left(\bar{\psi}\gamma_{5}T^{a}\right)^{2} - \left(\bar{\psi}\vec{\tau}T^{a}\psi\right)^{2} \end{aligned}$$

↔ formation of chiral condensate

 $\leftrightarrow \text{ formation of } \\ \text{diquark condensate} \\$

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt

[Braun, ML, Pospiech '17]

- Only $\lambda_{(\sigma-\pi)}(\Lambda)$ assumes finite value as inspired by gluon-induced four-quark flows
- UV value tuned so that specific scale k_0 of symmetry-breakdown is obtained (defined by $1/\lambda(k_0) = 0$, sets the scale for low-energy observables)
- One-channel approximation can be mapped onto mean-field gap-equation to access deep infrared: $m_q(k_0) \approx 300 \text{ MeV}$, $m_\sigma(k_0) \approx 800 \text{ MeV}$

TECHNISCHE UNIVERSITÄT DARMSTADT

$$\lambda_{\rm UV}^{\sigma-\pi} \approx 7.317, \ \lambda_{\rm UV}^{(i)} = 0 \text{ for } i \neq \sigma-\pi \longrightarrow k_{\rm cr}/\Lambda \approx 0.483 \iff m_{\psi}/\Lambda \approx 0.3$$

 $\lambda_{\rm UV}^{\sigma-\pi} \approx 7.317, \ \lambda_{\rm UV}^{(i)} = 0 \text{ for } i \neq \sigma-\pi \longrightarrow k_{\rm cr}/\Lambda \approx 0.483 \iff m_{\psi}/\Lambda \approx 0.3$

Fixed-point structure and patterns of symmetry breaking

TECHNISCHE UNIVERSITÄT DARMSTADT

Ansatz two-channel approximation

$$\Gamma_{k}[\bar{\psi},\psi] = \int_{x} \left\{ (\text{kinetic term}) + \frac{1}{2}\bar{\lambda}_{(\sigma-\pi)}(\sigma-\pi) + \frac{1}{2}\bar{\lambda}_{\text{csc}}(\text{csc}) \right\}$$

Fixed-point structure and patterns of symmetry breaking

TECHNISCHE UNIVERSITÄT DARMSTADT

Ansatz two-channel approximation

$$\Gamma_{k}[\bar{\psi},\psi] = \int_{x} \left\{ (\text{kinetic term}) + \frac{1}{2}\bar{\lambda}_{(\sigma-\pi)}(\sigma-\pi) + \frac{1}{2}\bar{\lambda}_{\text{csc}}(\text{csc}) \right\}$$

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt

Fixed-point structure and patterns of symmetry breaking

TECHNISCHE UNIVERSITÄT DARMSTADT

Ansatz two-channel approximation

$$\Gamma_k[\bar{\psi},\psi] = \int_x \left\{ (\text{kinetic term}) + \frac{1}{2}\bar{\lambda}_{(\sigma-\pi)} \left(\sigma-\pi\right) + \frac{1}{2}\bar{\lambda}_{\text{csc}} \left(\text{csc}\right) \right\}$$

Fixed-point structure and patterns of symmetry breaking

TECHNISCHE UNIVERSITÄT DARMSTADT

Ansatz two-channel approximation

$$\Gamma_k[\bar{\psi},\psi] = \int_x \left\{ (\text{kinetic term}) + \frac{1}{2}\bar{\lambda}_{(\sigma-\pi)} \left(\sigma-\pi\right) + \frac{1}{2}\bar{\lambda}_{\text{csc}} \left(\text{csc}\right) \right\}$$

QCD phase diagram: Nuclear matter EOS and neutron stars

SFB

QCD phase diagram: Nuclear matter EOS and neutron stars

Symmetrie breaking and four-quark interactions in QCD Structure of the phase boundary

at finite temperature and density

TECHNISCHE UNIVERSITÄT DARMSTADT

Marc Leonhardt

Institut für Kernphysik, Technische Universität Darmstadt

with Martin Pospiech and Jens Braun

CRC 1245 Seminar Integrated Research Training Group

QCD phase diagram ... and project B05

Nuclear matter equation of state for astrophysical applications

"[...] complementary approaches, chiral effective field theory at lower densities and the functional renormalization group starting from quarkgluon dynamics at higher densities, to obtain a quantitative determination of the nuclear matter equation of state over a wide range of densities, temperatures, and proton fractions."

Recap: QFT concepts

All physical information is stored in correlation functions/n-point functions.

$$\langle \phi(x_1) \dots \phi(x_n) \rangle := \mathcal{N} \int \mathcal{D}\phi \ \phi(x_1) \dots \phi(x_n) \mathrm{e}^{-S[\phi]}$$

e.g. scattering amplitude (S-matrix elements) via LSZ reduction formula

Statistical Physics

QFT

$$Z[J] = \int \mathcal{D}\phi \,\,\mathrm{e}^{-S[\phi] + \int J\phi}$$
 Partition function Generating functional

 $W[J] = \log Z[J]$ Helmholtz free energy Generating functional of connected diagrams

Gibbs free energy

Generating functional of 1PI diagrams

47

Effective action $\Gamma[\Phi]$

Flow from high to low energies in QCD

TECHNISCHE UNIVERSITÄT DARMSTADT

[adapted from H. Gies, 2006]

Flow equation [Wetterich, 1993]

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{STr} \left\{ \left[\Gamma_k^{(2)} + R_k \right]^{-1} \cdot (\partial_t R_k) \right\} t$$

"RG time" $t = \ln(k/\Lambda)$

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt

Functional renormalization group (FRG) Flow from high to low energies in QCD

TECHNISCHE UNIVERSITÄT DARMSTADT

[adapted from H. Gies, 2006]

Flow equation [Wetterich, 1993]

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{STr} \left\{ \left[\Gamma_k^{(2)} + R_k \right]^{-1} \cdot (\partial_t R_k) \right\} \quad t$$

SFB 1245

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt

Functional renormalization group (FRG) Flow from high to low energies in QCD

Functional renormalization group (FRG)

Flow from high to low energies in QCD

Functional renormalization group (FRG)

Flow from high to low energies in QCD

 $R_{\boldsymbol{k}}$

Г

<u>Effective average action</u> Γ_k

TECHNISCHE UNIVERSITÄT DARMSTADT

UV:
$$\Gamma_k \xrightarrow{k \to \Lambda} S$$

IR: $\Gamma_k \xrightarrow{k \to 0} \Gamma$

Flow from high to low energies in QCD

TECHNISCHE UNIVERSITÄT DARMSTADT

Functional renormalization group (FRG) Flow from high to low energies in QCD

Functional renormalization group (FRG) Flow from high to low energies in QCD

Flow from high to low energies in QCD

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt

Functional renormalization group (FRG) Flow from high to low energies in QCD

Theory space

k

UV: $\Gamma_k \xrightarrow{k \to \Lambda} S$ Effective average action Γ_k **IR:** $\Gamma_k \xrightarrow{k \to 0} \Gamma$ Everything that is not forbidden is allowed. q_s 00000000 g_s g_s 00000000 0000000 **Gluodynamics** g_s g_s

Flow
equation
$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{STr} \left\{ \left[\Gamma_k^{(2)} + R_k \right]^{-1} \cdot (\partial_t R_k) \right\}$$

[C.Wetterich, *Phys. Lett. B*, 301, 1993] $t = \ln(k/\Lambda)$

[adapted from H. Gies, 2006]

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt

 $R_{\boldsymbol{k}}$

Functional renormalization group (FRG) Flow from high to low energies in QCD

QCD phase diagram: Neutron stars and the cold dense EoS

TECHNISCHE UNIVERSITÄT DARMSTADT

Functional renormalization group (FRG) Flow from high to low energies in QCD

TECHNISCHE UNIVERSITÄT DARMSTADT

Effective average action Γ_{k}

Functional renormalization group (FRG) Flow from high to low energies in QCD

TECHNISCHE UNIVERSITÄT DARMSTADT

Functional renormalization group (FRG)

