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At low energies, effective field theories based on QCD
provide a systematic basis for nuclear forces (Epelbaum,
Hammer, and Meißner, 2009), which make unique predictions
for many-body forces (Hammer, Nogga, and Schwenk, 2013)
and neutron-rich matter (Tolos, Friman, and Schwenk, 2008;
Hebeler and Schwenk, 2014; Hebeler et al., 2015). While two-
nucleon interactions are well constrained, three-nucleon
forces are a frontier in nuclear physics, especially for
neutron-rich nuclei (Wienholtz et al., 2013). Such exotic
nuclei are the focus of present and upcoming laboratory
experiments. Neutron star observations probe the same
nuclear forces at extremes of density and neutron richness.
In addition to effective field theories, there are nuclear
potential models, such as the Argonne two-nucleon and
Urbana/Illinois three-nucleon potentials, which are fit to
two-body scattering data and light nuclei (Carlson et al.,
2014; Gandolfi et al., 2014).
At high densities, neutron stars may be affected by exotic

states of matter. This regime is not accessible to first principle
QCD calculations due to the fermion sign problem [see, for
example, Hands (2007) and Miller (2013)]. Therefore, at
present, one has to resort to models, and experiment and
observation are vital to test theories and drive progress. In
addition, perturbative QCD calculations have recently been
performed at very high densities (above 10 GeV=fm3,
∼64ρsat), and used to interpolate to the EOS at low densities
(Kurkela et al., 2014).
For symmetric matter (with an equal number of neutrons

and protons) at the nuclear saturation density ρsat ¼
2.8 × 1014 g=cm3 (the central density in very large nuclei
when the Coulomb interaction is neglected) there is a range of
experimental constraints. This includes nuclear masses and
charge radii (Klüpfel et al., 2009; Kortelainen et al., 2010,
2014; Nikšić et al., 2015) as well as giant dipole resonances
and dipole polarizabilities (Trippa, Colò, and Vigezzi, 2008;
Tamii et al., 2011; Piekarewicz et al., 2012). Neutron-rich
matter can be probed by measuring the neutron skin thickness
of heavy nuclei (Horowitz et al., 2001; Roca-Maza et al.,
2011). However, all of these laboratory experiments probe
only matter at nuclear densities and below. Low-energy
heavy-ion collisions probe hot and dense matter, but have
uncontrolled extrapolations to zero temperature and to
extreme neutron richness (Tsang et al., 2009). Neutron stars
therefore provide a unique environment for testing our under-
standing of the physics of the strong interaction and dense
matter.
At very high densities, possibly reached in neutron star

cores, transitions to non-nucleonic states of matter may occur.
Some of the possibilities involve strange quarks: unlike heavy-
ion collision experiments, which always produce very short-
lived and hot dense states, the stable gravitationally confined
environment of a neutron star permits slow-acting weak
interactions that can form states of matter with a high net
strangeness. Strange matter possibilities include the formation
of hyperons [strange baryons (Ambartsumyan and Saakyan,
1960; Glendenning, 1982; Balberg, Lichtenstadt, and Cook,
1999; Vidaña, 2015)], deconfined quarks [forming a hybrid
star (Collins and Perry, 1975)], or color superconducting
phases (Alford et al., 2008). It is even possible that the entire

star might convert into a lower energy self-bound state
consisting of up, down, and strange quarks, known as a
strange quark star (Bodmer, 1971; Witten, 1984; Haensel,
Zdunik, and Schaefer, 1986). Other states that have been
hypothesized include Bose-Einstein condensates of mesons
[pions or kaons, the latter containing a strange quark, see, for
example, Kaplan and Nelson (1986) and Kunihiro, Takatsuka,
and Tamagaki (1993)]. The densities at which such phases
may appear are highly uncertain.
Figure 2 compares the parameter space that can be accessed

within the laboratory to that which can be explored with
neutron stars. The physical ground state of dense matter is
neutron rich, which develops via weak interactions, and it is
unbound so gravitational confinement is necessary to realize
the ground state of dense matter in nature. Only neutron stars
sample this low temperature regime of the dense matter EOS.
The exotic non-nucleonic states of matter described previ-
ously can be reached only with extreme difficulty in the
laboratory.

C. Methodology: How neutron star mass and radius
specify the EOS

The relativistic stellar structure equations relate the EOS to
macroscopic observables including the mass M and radius R
of the neutron star. The dependence of the EOS on
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FIG. 2. Hypothetical states of matter accessed by neutron stars
and current or planned laboratory experiments (Large Hadron
Collider and other heavy-ion collision experiments, shown by
black arrows), in the parameter space of temperature against
baryon chemical potential (1–2 GeV corresponds to ∼1 − 6 times
the density of normal atomic nuclei). Quarkyonic matter: a
hypothesized phase where cold dense quarks experience confin-
ing forces (McLerran and Pisarski, 2007; Fukushima and
Hatsuda, 2011). The stabilizing effect of gravitational confine-
ment in neutron stars permits long-time-scale weak interactions
(such as electron captures) to reach equilibrium, generating
matter that is neutron rich [see Fig. 2 of Watts et al. (2015)]
and may involve matter with strange quarks. This means that
neutron stars access unique states of matter that can be created
only with extreme difficulty in the laboratory: nuclear super-
fluids, strange matter states with hyperons, deconfined quarks,
and color superconducting phases.

Anna L. Watts et al.: Colloquium: Measuring the neutron star …

Rev. Mod. Phys., Vol. 88, No. 2, April–June 2016 021001-4

[Watts et al., 2016]



QCD phase diagram:  
Neutron stars and the cold dense EoS

Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt  2
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FIG. 2. Hypothetical states of matter accessed by neutron stars
and current or planned laboratory experiments (Large Hadron
Collider and other heavy-ion collision experiments, shown by
black arrows), in the parameter space of temperature against
baryon chemical potential (1–2 GeV corresponds to ∼1 − 6 times
the density of normal atomic nuclei). Quarkyonic matter: a
hypothesized phase where cold dense quarks experience confin-
ing forces (McLerran and Pisarski, 2007; Fukushima and
Hatsuda, 2011). The stabilizing effect of gravitational confine-
ment in neutron stars permits long-time-scale weak interactions
(such as electron captures) to reach equilibrium, generating
matter that is neutron rich [see Fig. 2 of Watts et al. (2015)]
and may involve matter with strange quarks. This means that
neutron stars access unique states of matter that can be created
only with extreme difficulty in the laboratory: nuclear super-
fluids, strange matter states with hyperons, deconfined quarks,
and color superconducting phases.

Anna L. Watts et al.: Colloquium: Measuring the neutron star …

Rev. Mod. Phys., Vol. 88, No. 2, April–June 2016 021001-4

[Watts et al., 2016]
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FIG. 2. Hypothetical states of matter accessed by neutron stars
and current or planned laboratory experiments (Large Hadron
Collider and other heavy-ion collision experiments, shown by
black arrows), in the parameter space of temperature against
baryon chemical potential (1–2 GeV corresponds to ∼1 − 6 times
the density of normal atomic nuclei). Quarkyonic matter: a
hypothesized phase where cold dense quarks experience confin-
ing forces (McLerran and Pisarski, 2007; Fukushima and
Hatsuda, 2011). The stabilizing effect of gravitational confine-
ment in neutron stars permits long-time-scale weak interactions
(such as electron captures) to reach equilibrium, generating
matter that is neutron rich [see Fig. 2 of Watts et al. (2015)]
and may involve matter with strange quarks. This means that
neutron stars access unique states of matter that can be created
only with extreme difficulty in the laboratory: nuclear super-
fluids, strange matter states with hyperons, deconfined quarks,
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• Chiral effective field theory (at lower densities) 

• Efficient Monte-Carlo framework for MBPT 

• Nuclear thermodynamics from χEFT interactions 

• Functional renormalization group (at higher densities) 

• Fierz-complete four-quark interactions  
in hot and dense QCD (2 flavors) 

• Ground state properties and phases 

• Conclusions and outlook

Outline

[Drischler, Hebeler, Schwenk, in preparation]

[Braun, ML, Pospiech, arXiv:1705.00074]

[Wellenhofer, Holt, Kaiser, Weise; ’14, ’15, ‘16]

Christian  
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Corbinian 
Wellenhofer
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Leonhardt

[Braun, ML, Pospiech, in preparation]
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consisting of up, down, and strange quarks, known as a
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hypothesized include Bose-Einstein condensates of mesons
[pions or kaons, the latter containing a strange quark, see, for
example, Kaplan and Nelson (1986) and Kunihiro, Takatsuka,
and Tamagaki (1993)]. The densities at which such phases
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within the laboratory to that which can be explored with
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FIG. 2. Hypothetical states of matter accessed by neutron stars
and current or planned laboratory experiments (Large Hadron
Collider and other heavy-ion collision experiments, shown by
black arrows), in the parameter space of temperature against
baryon chemical potential (1–2 GeV corresponds to ∼1 − 6 times
the density of normal atomic nuclei). Quarkyonic matter: a
hypothesized phase where cold dense quarks experience confin-
ing forces (McLerran and Pisarski, 2007; Fukushima and
Hatsuda, 2011). The stabilizing effect of gravitational confine-
ment in neutron stars permits long-time-scale weak interactions
(such as electron captures) to reach equilibrium, generating
matter that is neutron rich [see Fig. 2 of Watts et al. (2015)]
and may involve matter with strange quarks. This means that
neutron stars access unique states of matter that can be created
only with extreme difficulty in the laboratory: nuclear super-
fluids, strange matter states with hyperons, deconfined quarks,
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Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, ...

… and ongoing work at N4LO, N5LO, …

Nuclear matter EOS for astrophysical applications 
Chiral effective field theory
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Nuclear matter EOS for astrophysical applications 
Efficient Monte-Carlo framework for MBPT

● based on analytical expressions  
● NN, 3N, 4N forces @ N3LO (no PW’s) 
● MBPT for up to 4th order 

(automatic code generation)

[Drischler, Hebeler, Schwenk, in preparation]
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Nuclear thermodynamics  
from chiral effective field theory interactions

◆ Compute thermodynamic 
properties of nuclear matter   

● Needed for neutron star and supernova 
simulations 

● Large parameter space: temperature T,  
nucleon density ρ, isospin asymmetry 
δ=1-2Y (where Y is the proton fraction) 

◆ Good benchmark results 
e.g.: good agreement with virial 
expansion at low densities  
(see Figure) 

  
◆ Future work:  

single-particle properties, improved 
calculations (better uncertainty 
estimates), ...

Figure: Internal energy of pure neutron       
                matter (δ=1; VEoS: virial expansion)

[Wellenhofer, Holt, Kaiser, Weise, PRC 89, 064009 (2014)] 
[Wellenhofer, Holt, Kaiser, PRC 92, 015801 (2015)] 
[Wellenhofer, Holt, Kaiser, PRC 93, 055802 (2016)] 
[Schwenk, Horowitz, Phys. Lett. B638, 153-159 (2006)]
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At low energies, effective field theories based on QCD
provide a systematic basis for nuclear forces (Epelbaum,
Hammer, and Meißner, 2009), which make unique predictions
for many-body forces (Hammer, Nogga, and Schwenk, 2013)
and neutron-rich matter (Tolos, Friman, and Schwenk, 2008;
Hebeler and Schwenk, 2014; Hebeler et al., 2015). While two-
nucleon interactions are well constrained, three-nucleon
forces are a frontier in nuclear physics, especially for
neutron-rich nuclei (Wienholtz et al., 2013). Such exotic
nuclei are the focus of present and upcoming laboratory
experiments. Neutron star observations probe the same
nuclear forces at extremes of density and neutron richness.
In addition to effective field theories, there are nuclear
potential models, such as the Argonne two-nucleon and
Urbana/Illinois three-nucleon potentials, which are fit to
two-body scattering data and light nuclei (Carlson et al.,
2014; Gandolfi et al., 2014).
At high densities, neutron stars may be affected by exotic

states of matter. This regime is not accessible to first principle
QCD calculations due to the fermion sign problem [see, for
example, Hands (2007) and Miller (2013)]. Therefore, at
present, one has to resort to models, and experiment and
observation are vital to test theories and drive progress. In
addition, perturbative QCD calculations have recently been
performed at very high densities (above 10 GeV=fm3,
∼64ρsat), and used to interpolate to the EOS at low densities
(Kurkela et al., 2014).
For symmetric matter (with an equal number of neutrons

and protons) at the nuclear saturation density ρsat ¼
2.8 × 1014 g=cm3 (the central density in very large nuclei
when the Coulomb interaction is neglected) there is a range of
experimental constraints. This includes nuclear masses and
charge radii (Klüpfel et al., 2009; Kortelainen et al., 2010,
2014; Nikšić et al., 2015) as well as giant dipole resonances
and dipole polarizabilities (Trippa, Colò, and Vigezzi, 2008;
Tamii et al., 2011; Piekarewicz et al., 2012). Neutron-rich
matter can be probed by measuring the neutron skin thickness
of heavy nuclei (Horowitz et al., 2001; Roca-Maza et al.,
2011). However, all of these laboratory experiments probe
only matter at nuclear densities and below. Low-energy
heavy-ion collisions probe hot and dense matter, but have
uncontrolled extrapolations to zero temperature and to
extreme neutron richness (Tsang et al., 2009). Neutron stars
therefore provide a unique environment for testing our under-
standing of the physics of the strong interaction and dense
matter.
At very high densities, possibly reached in neutron star

cores, transitions to non-nucleonic states of matter may occur.
Some of the possibilities involve strange quarks: unlike heavy-
ion collision experiments, which always produce very short-
lived and hot dense states, the stable gravitationally confined
environment of a neutron star permits slow-acting weak
interactions that can form states of matter with a high net
strangeness. Strange matter possibilities include the formation
of hyperons [strange baryons (Ambartsumyan and Saakyan,
1960; Glendenning, 1982; Balberg, Lichtenstadt, and Cook,
1999; Vidaña, 2015)], deconfined quarks [forming a hybrid
star (Collins and Perry, 1975)], or color superconducting
phases (Alford et al., 2008). It is even possible that the entire

star might convert into a lower energy self-bound state
consisting of up, down, and strange quarks, known as a
strange quark star (Bodmer, 1971; Witten, 1984; Haensel,
Zdunik, and Schaefer, 1986). Other states that have been
hypothesized include Bose-Einstein condensates of mesons
[pions or kaons, the latter containing a strange quark, see, for
example, Kaplan and Nelson (1986) and Kunihiro, Takatsuka,
and Tamagaki (1993)]. The densities at which such phases
may appear are highly uncertain.
Figure 2 compares the parameter space that can be accessed

within the laboratory to that which can be explored with
neutron stars. The physical ground state of dense matter is
neutron rich, which develops via weak interactions, and it is
unbound so gravitational confinement is necessary to realize
the ground state of dense matter in nature. Only neutron stars
sample this low temperature regime of the dense matter EOS.
The exotic non-nucleonic states of matter described previ-
ously can be reached only with extreme difficulty in the
laboratory.

C. Methodology: How neutron star mass and radius
specify the EOS

The relativistic stellar structure equations relate the EOS to
macroscopic observables including the mass M and radius R
of the neutron star. The dependence of the EOS on
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FIG. 2. Hypothetical states of matter accessed by neutron stars
and current or planned laboratory experiments (Large Hadron
Collider and other heavy-ion collision experiments, shown by
black arrows), in the parameter space of temperature against
baryon chemical potential (1–2 GeV corresponds to ∼1 − 6 times
the density of normal atomic nuclei). Quarkyonic matter: a
hypothesized phase where cold dense quarks experience confin-
ing forces (McLerran and Pisarski, 2007; Fukushima and
Hatsuda, 2011). The stabilizing effect of gravitational confine-
ment in neutron stars permits long-time-scale weak interactions
(such as electron captures) to reach equilibrium, generating
matter that is neutron rich [see Fig. 2 of Watts et al. (2015)]
and may involve matter with strange quarks. This means that
neutron stars access unique states of matter that can be created
only with extreme difficulty in the laboratory: nuclear super-
fluids, strange matter states with hyperons, deconfined quarks,
and color superconducting phases.

Anna L. Watts et al.: Colloquium: Measuring the neutron star …
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Four-quark interactions and symmetries 
Fierz-complete basis of interactions
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RG flow of four-quark interactions 
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RG flow of four-quark interactions 
Qualitative behavior and the effect of external parameters
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Exploring the phase diagram 
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Exploring the phase diagram 
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Exploring the phase diagram 
Fixed-point structure and patterns of symmetry breaking
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Exploring the phase diagram 
Fixed-point structure and patterns of symmetry breaking
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Exploring the phase diagram 
Fixed-point structure and patterns of symmetry breaking
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• First Fierz-complete study of effective action 
• Importance of Fierz-completeness to probe the regime at high quark chemical 

potential and low temperature 
• Forming of diquark condensate (color superconducting phase)  

Outlook Inclusion of dynamic gauge fields (equations worked out)  
 and first estimate of EoS, work in progress.

Functional renormalization group at higher densities

Chiral effective field theory at lower densities
• Efficient Monte-Carlo framework for MBPT (automatic code generation; 4th order) 
• Improve fits of LECs by guiding in terms of nuclear saturation 
• Nuclear thermodynamics from χEFT interactions: 

Outlook Apply saturation guided fitting to next-generation interactions,  

 extract single-particle properties from nuclear thermodynamics

T , ⇢, �
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Four-quark interactions and symmetries 
Fierz-complete basis of interactions
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Scale fixing procedure: 
• Only                    assumes finite value as inspired by gluon-induced four-quark flows 
• UV value tuned so that specific scale      of symmetry-breakdown is obtained 

(defined by                      , sets the scale for low-energy observables) 
• One-channel approximation can be mapped onto mean-field gap-equation  

to access deep infrared: 
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RG flow of four-quark interactions 
Qualitative behavior and the effect of external parameters

RG flow equation:
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Structure of the phase boundary
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At low energies, effective field theories based on QCD
provide a systematic basis for nuclear forces (Epelbaum,
Hammer, and Meißner, 2009), which make unique predictions
for many-body forces (Hammer, Nogga, and Schwenk, 2013)
and neutron-rich matter (Tolos, Friman, and Schwenk, 2008;
Hebeler and Schwenk, 2014; Hebeler et al., 2015). While two-
nucleon interactions are well constrained, three-nucleon
forces are a frontier in nuclear physics, especially for
neutron-rich nuclei (Wienholtz et al., 2013). Such exotic
nuclei are the focus of present and upcoming laboratory
experiments. Neutron star observations probe the same
nuclear forces at extremes of density and neutron richness.
In addition to effective field theories, there are nuclear
potential models, such as the Argonne two-nucleon and
Urbana/Illinois three-nucleon potentials, which are fit to
two-body scattering data and light nuclei (Carlson et al.,
2014; Gandolfi et al., 2014).
At high densities, neutron stars may be affected by exotic

states of matter. This regime is not accessible to first principle
QCD calculations due to the fermion sign problem [see, for
example, Hands (2007) and Miller (2013)]. Therefore, at
present, one has to resort to models, and experiment and
observation are vital to test theories and drive progress. In
addition, perturbative QCD calculations have recently been
performed at very high densities (above 10 GeV=fm3,
∼64ρsat), and used to interpolate to the EOS at low densities
(Kurkela et al., 2014).
For symmetric matter (with an equal number of neutrons

and protons) at the nuclear saturation density ρsat ¼
2.8 × 1014 g=cm3 (the central density in very large nuclei
when the Coulomb interaction is neglected) there is a range of
experimental constraints. This includes nuclear masses and
charge radii (Klüpfel et al., 2009; Kortelainen et al., 2010,
2014; Nikšić et al., 2015) as well as giant dipole resonances
and dipole polarizabilities (Trippa, Colò, and Vigezzi, 2008;
Tamii et al., 2011; Piekarewicz et al., 2012). Neutron-rich
matter can be probed by measuring the neutron skin thickness
of heavy nuclei (Horowitz et al., 2001; Roca-Maza et al.,
2011). However, all of these laboratory experiments probe
only matter at nuclear densities and below. Low-energy
heavy-ion collisions probe hot and dense matter, but have
uncontrolled extrapolations to zero temperature and to
extreme neutron richness (Tsang et al., 2009). Neutron stars
therefore provide a unique environment for testing our under-
standing of the physics of the strong interaction and dense
matter.
At very high densities, possibly reached in neutron star

cores, transitions to non-nucleonic states of matter may occur.
Some of the possibilities involve strange quarks: unlike heavy-
ion collision experiments, which always produce very short-
lived and hot dense states, the stable gravitationally confined
environment of a neutron star permits slow-acting weak
interactions that can form states of matter with a high net
strangeness. Strange matter possibilities include the formation
of hyperons [strange baryons (Ambartsumyan and Saakyan,
1960; Glendenning, 1982; Balberg, Lichtenstadt, and Cook,
1999; Vidaña, 2015)], deconfined quarks [forming a hybrid
star (Collins and Perry, 1975)], or color superconducting
phases (Alford et al., 2008). It is even possible that the entire

star might convert into a lower energy self-bound state
consisting of up, down, and strange quarks, known as a
strange quark star (Bodmer, 1971; Witten, 1984; Haensel,
Zdunik, and Schaefer, 1986). Other states that have been
hypothesized include Bose-Einstein condensates of mesons
[pions or kaons, the latter containing a strange quark, see, for
example, Kaplan and Nelson (1986) and Kunihiro, Takatsuka,
and Tamagaki (1993)]. The densities at which such phases
may appear are highly uncertain.
Figure 2 compares the parameter space that can be accessed

within the laboratory to that which can be explored with
neutron stars. The physical ground state of dense matter is
neutron rich, which develops via weak interactions, and it is
unbound so gravitational confinement is necessary to realize
the ground state of dense matter in nature. Only neutron stars
sample this low temperature regime of the dense matter EOS.
The exotic non-nucleonic states of matter described previ-
ously can be reached only with extreme difficulty in the
laboratory.

C. Methodology: How neutron star mass and radius
specify the EOS

The relativistic stellar structure equations relate the EOS to
macroscopic observables including the mass M and radius R
of the neutron star. The dependence of the EOS on
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FIG. 2. Hypothetical states of matter accessed by neutron stars
and current or planned laboratory experiments (Large Hadron
Collider and other heavy-ion collision experiments, shown by
black arrows), in the parameter space of temperature against
baryon chemical potential (1–2 GeV corresponds to ∼1 − 6 times
the density of normal atomic nuclei). Quarkyonic matter: a
hypothesized phase where cold dense quarks experience confin-
ing forces (McLerran and Pisarski, 2007; Fukushima and
Hatsuda, 2011). The stabilizing effect of gravitational confine-
ment in neutron stars permits long-time-scale weak interactions
(such as electron captures) to reach equilibrium, generating
matter that is neutron rich [see Fig. 2 of Watts et al. (2015)]
and may involve matter with strange quarks. This means that
neutron stars access unique states of matter that can be created
only with extreme difficulty in the laboratory: nuclear super-
fluids, strange matter states with hyperons, deconfined quarks,
and color superconducting phases.
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Structure of the phase boundary
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Structure of the phase boundary
��-⇡
UV ⇡ 7.317, �(i)

UV = 0 for i 6= �-⇡ kcr/⇤ ⇡ 0.483  ! m /⇤ ⇡ 0.3

 0

 0.1

 0.2

 0.3

 0.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

T/
k 0

µ /k0

Fierz complete, UA(1) broken
Fierz complete, UA(1) conserved



Mainz, October 2017 | CRC 1245 Workshop | Marc Leonhardt  36

Structure of the phase boundary
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Exploring the phase diagram 
Fixed-point structure and patterns of symmetry breaking
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Exploring the phase diagram 
Fixed-point structure and patterns of symmetry breaking
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Structure of the phase boundary
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Structure of the phase boundary
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QCD phase diagram:  
Nuclear matter EOS and neutron stars
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temperature can be neglected in computing bulk structure for
neutron stars older than ∼100 s: by this point the neutron star
has cooled far below the Fermi temperature of the particles
involved, the matter is degenerate, and hence temperature
effects are negligible (Haensel, Potekhin, and Yakovlev,
2007). For nonrotating and nonmagnetic stars, the classic
Tolman-Oppenheimer Volkoff stellar structure equations
would apply (Oppenheimer and Volkoff, 1939; Tolman,
1939). However, rotation is important, and the equations
must be modified accordingly. For neutron stars spinning at a
few hundred Hz the slow rotation (to second order) Hartle-
Thorne metric is appropriate for most applications (Hartle and
Thorne, 1968). One can also compute full general relativity
(GR) models for stars spinning at up to breakup speeds using a
variety of methods implemented in well-tested codes
(Stergioulas, 2003). Codes such as ROTSTAR (Bonazzola,
Gourgoulhon, and Marck, 1998) and RNS (Stergioulas and
Friedman, 1995) generate masses and radii for rapidly rotating
neutron stars that are accurate to better than 1 part in
10−4–10−5.
There is a one to one map from the EOS to theM-R relation

(Lindblom, 1992). Some examples are shown in Fig. 3. A few
general features are noteworthy. For each EOS there is a
maximum mass that is a direct consequence of general
relativity (Chamel et al., 2013), and there are plausible
astrophysical mechanisms (formation or accretion) that might
lead to this being reached in real neutron stars. The minimum
observable mass, by contrast, is more likely to be set by
evolution than by stability. The radius tends to reduce as mass
increases (although for some EOS models, the radius
increases slightly with increasing mass in the midrange of
masses), and current models suggest radii in the range
8–15 km for masses above 1M⊙.

In terms of dependence on the nuclear physics, the
maximum mass is determined primarily by the behavior of
the cold EOS at the very highest densities [∼ð5 − 8Þρsat
(Lattimer and Prakash, 2005; Özel and Psaltis, 2009; Read
et al., 2009; Hebeler et al., 2013)]. The presence of non-
nucleonic phases (such as hyperons or condensates) softens
the EOS, reducing pressure support and leading to a smaller
maximum mass. The radius, on the other hand, depends more
strongly on the behavior of the EOS at ∼ð1 − 2Þρsat (Lattimer
and Prakash, 2001). The nucleonic EOS at these densities is
highly sensitive to three-nucleon forces (Hebeler and
Schwenk, 2010; Gandolfi, Carlson, and Reddy, 2012), while
the presence of non-nucleonic phases tends to reduce R. The
slope of the M-R relation (i.e., whether R increases or
decreases with M), for masses ≳1.2M⊙ (the observed mini-
mum, consistent with expectations from formation models),
depends on the pressure at ∼4ρsat (Özel and Psaltis, 2009).
In testing EOS models, there are two potential approaches.

One is simply to compute, for a given EOS model, the
resulting M-R relation and then determine the likelihood of
obtaining the measured values of M, R (with uncertainties) if
this model is correct. The other option is to perform the
inverse process and to map from the measured values of M-R
(with their uncertainties) to the EOS. The first attempt to
address this problem, which made no assumptions about the
form of the EOS, was made by Lindblom (1992). Since then
the approach has been refined by several others. Newer
analyses rely on parametrized representations of the EOS
that are a good characterization of many specific EOS models,
but contain the lowest possible number of adjustable param-
eters [e.g., piecewise polytropic fits as employed by Özel and
Psaltis (2009), Read et al. (2009), and Steiner, Lattimer, and
Brown (2010), or spectral representations as employed by

FIG. 3. The pressure density relation (EOS, left) and the corresponding M-R relation (right) based on models with different
microphysics. The three individual models that extend to the highest pressures and masses) (red): nucleonic EOS. From Lattimer and
Prakash, 2001. Solid black curves: hybrid models (strange quark core, Zdunik and Haensel, 2013). Dashed black curves: hyperon core
models (Bednarek et al., 2012). Dash-dotted magenta curves: a self-bound strange quark star model (Lattimer and Prakash, 2001).
Shaded gray bands: range of a parametrized family of nucleonic EOS based on chiral effective field theory at low densities, which
provides a systematic expansion for nuclear forces that allows one to estimate the theoretical uncertainties involved, combined with
using general extrapolations to high densities [see Fig. 12 of Hebeler et al. (2013) for examples of specific representative
EOS lying within this band].
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An example is shown in Fig. 17. Comparing Fig. 11 and
Fig. 17 it is unlikely that any of the high-density and
low-temperature phases can be explored in heavy-ion col-
lisions.
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FIG. 17 Color superconducting phases at high baryo-
chemical potential µq = µb/3 and low temperatures as
predicted by the NJL model in the Hartree approxima-
tion (Ruester et al., 2005). The region of spontaneously bro-
ken chiral symmetry is denoted by χSB while regions where
quark matter is in the normal state are indicated by NQ.
The bold solid lines mark boundaries of first-order transi-
tions, while the thin lines denote second-order boundaries.
The dashed lines indicate the boundaries between gapless and
gapped regions. Several critical points are found.

Stressed superconductivity can however be studied
experimentally in trapped ultracold fermionic atomic
gases (Giorgini et al., 2007). Here an imbalance in chem-
ical potentials can be achieved by populating two hyper-
fine states of the atom with a different number of parti-
cles. At the same time the interaction strength can be
controlled using Feshbach resonances, to drive the sys-
tem from weak coupling (BCS regime) through the point
where diatomic bound states form to the point where
diatomic molecules undergo Bose-Einstein condensation
(BEC regime). Thus many of the predicted phases of cold
quark matter can be ’simulated’ in the laboratory with
interesting future perspectives and cross-fertilization.

Even though the NJL model is useful in exploring the
many possibilities of superconducting phases, its quanti-
tative predictive power is limited by the large sensitiv-
ity of the results to the model parameters. First prin-
ciple calculations, on the other hand, are very difficult
since they require accurate knowledge of the di-quark
interaction on scales of the Fermi energy ϵF where αs is
large. Only at very high densities or asymptotically large
µq, the coupling becomes small enough to make reliable
predictions from first principles. In this case one-gluon
exchange between di-quarks dominates. In the dense
medium its longitudinal (color-electric) component is De-
bye screened while the transversal (color-magnetic) com-
ponents are dynamically screened due to Landau damp-

ing. This implies that the ratio of the magnetic to electric
polarization functions goes like ω/|q⃗| where ω is the fre-
quency and q⃗ the three-momentum of the gluon field. In
the static limit ω → 0 the magnetic components therefore
remain unscreened. As a consequence, in contrast to the
usual BCS theory where the pairing gap as a function of
the coupling constant g varies as ∆/µ ∼ exp(−const/g2),
one has (Son, 1999)

∆

µq
∼ exp

(

−
3π2

√
2gs

)

. (18)

Such retardation effects for long-range forces are also
known in condensed matter physics (Eliashberg, 1960,
1961). The 1/gs-dependence in the exponent of the gap
function leads to the surprizing phenomenon that the
pairing gap can take arbitrarily large values, even though
the coupling decreases (Rajagopal and Wilczek, 2001)28.
Taking into account the color-flavor-spin degrees of free-
dom one finds the CFL phase to be the energetically most
favored pairing state at asymptotically large quark chem-
ical potentials (Fig. 17).

Even though these ab-initio findings are quite inter-
esting from a many-body point of view, they are valid
only for asymptotically large values of µq, because of
the logarithmic running of αs (Eq. 9)29. Hence, they
are of little relevance for the interior of neutron stars
where µq ∼ 400 − 600 MeV. One can try to remedy
this by the inclusion of higher-order corrections in gs.
Since at such scales gs ≃ 1 it is questionable, however,
whether such perturbative expansion schemes are justi-
fied. A more promising approach is to use Schwinger-
Dyson equations where both the quark and gluon fields
are treated non-perturbatively with a proper treatment
of infra-red (small-momentum behavior) of αs. Recent
results (Nickel et al., 2006a,b) indicate that, in the rel-
evant regime of quark densities in the core of neutron
stars, pairing gaps of the order of 100 MeV can be ex-
pected, confirming the earlier findings within NJL model
studies.

VI. SUMMARY AND CONCLUSIONS

In the 30 years since the first discussions about the
phases of QCD and the corresponding phase diagram
there has been tremendous progress in our understand-
ing of strongly interacting matter at extreme conditions.
Large experimental campaigns have been mounted and
have amassed a wealth of new data and led to a series of

28 Note that gs =
√

4παs according to Eq. (9) behaves like
√

1/ lnµq if one assumes that the momentum scale Q is gov-
erned by µq . Inserting this into Eq. (18) it is clear that the
exponential drops more slowly than 1/µq .

29 For weak coupling theory to apply in QCD µq has to be of the
order of 104 MeV! (Fig. 2).
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QCD phase diagram 
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Nuclear matter equation of state for astrophysical applications 

“[…] complementary approaches, chiral effective field theory at lower 
densities and the functional renormalization group starting from quark-
gluon dynamics at higher densities, to obtain a quantitative 
determination of the nuclear matter equation of state over a wide range 
of densities, temperatures, and proton fractions.”
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All physical information is stored in correlation functions/n-point functions.
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QCD phase diagram:  
Neutron stars and the cold dense EoS
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At low energies, effective field theories based on QCD
provide a systematic basis for nuclear forces (Epelbaum,
Hammer, and Meißner, 2009), which make unique predictions
for many-body forces (Hammer, Nogga, and Schwenk, 2013)
and neutron-rich matter (Tolos, Friman, and Schwenk, 2008;
Hebeler and Schwenk, 2014; Hebeler et al., 2015). While two-
nucleon interactions are well constrained, three-nucleon
forces are a frontier in nuclear physics, especially for
neutron-rich nuclei (Wienholtz et al., 2013). Such exotic
nuclei are the focus of present and upcoming laboratory
experiments. Neutron star observations probe the same
nuclear forces at extremes of density and neutron richness.
In addition to effective field theories, there are nuclear
potential models, such as the Argonne two-nucleon and
Urbana/Illinois three-nucleon potentials, which are fit to
two-body scattering data and light nuclei (Carlson et al.,
2014; Gandolfi et al., 2014).
At high densities, neutron stars may be affected by exotic

states of matter. This regime is not accessible to first principle
QCD calculations due to the fermion sign problem [see, for
example, Hands (2007) and Miller (2013)]. Therefore, at
present, one has to resort to models, and experiment and
observation are vital to test theories and drive progress. In
addition, perturbative QCD calculations have recently been
performed at very high densities (above 10 GeV=fm3,
∼64ρsat), and used to interpolate to the EOS at low densities
(Kurkela et al., 2014).
For symmetric matter (with an equal number of neutrons

and protons) at the nuclear saturation density ρsat ¼
2.8 × 1014 g=cm3 (the central density in very large nuclei
when the Coulomb interaction is neglected) there is a range of
experimental constraints. This includes nuclear masses and
charge radii (Klüpfel et al., 2009; Kortelainen et al., 2010,
2014; Nikšić et al., 2015) as well as giant dipole resonances
and dipole polarizabilities (Trippa, Colò, and Vigezzi, 2008;
Tamii et al., 2011; Piekarewicz et al., 2012). Neutron-rich
matter can be probed by measuring the neutron skin thickness
of heavy nuclei (Horowitz et al., 2001; Roca-Maza et al.,
2011). However, all of these laboratory experiments probe
only matter at nuclear densities and below. Low-energy
heavy-ion collisions probe hot and dense matter, but have
uncontrolled extrapolations to zero temperature and to
extreme neutron richness (Tsang et al., 2009). Neutron stars
therefore provide a unique environment for testing our under-
standing of the physics of the strong interaction and dense
matter.
At very high densities, possibly reached in neutron star

cores, transitions to non-nucleonic states of matter may occur.
Some of the possibilities involve strange quarks: unlike heavy-
ion collision experiments, which always produce very short-
lived and hot dense states, the stable gravitationally confined
environment of a neutron star permits slow-acting weak
interactions that can form states of matter with a high net
strangeness. Strange matter possibilities include the formation
of hyperons [strange baryons (Ambartsumyan and Saakyan,
1960; Glendenning, 1982; Balberg, Lichtenstadt, and Cook,
1999; Vidaña, 2015)], deconfined quarks [forming a hybrid
star (Collins and Perry, 1975)], or color superconducting
phases (Alford et al., 2008). It is even possible that the entire

star might convert into a lower energy self-bound state
consisting of up, down, and strange quarks, known as a
strange quark star (Bodmer, 1971; Witten, 1984; Haensel,
Zdunik, and Schaefer, 1986). Other states that have been
hypothesized include Bose-Einstein condensates of mesons
[pions or kaons, the latter containing a strange quark, see, for
example, Kaplan and Nelson (1986) and Kunihiro, Takatsuka,
and Tamagaki (1993)]. The densities at which such phases
may appear are highly uncertain.
Figure 2 compares the parameter space that can be accessed

within the laboratory to that which can be explored with
neutron stars. The physical ground state of dense matter is
neutron rich, which develops via weak interactions, and it is
unbound so gravitational confinement is necessary to realize
the ground state of dense matter in nature. Only neutron stars
sample this low temperature regime of the dense matter EOS.
The exotic non-nucleonic states of matter described previ-
ously can be reached only with extreme difficulty in the
laboratory.

C. Methodology: How neutron star mass and radius
specify the EOS

The relativistic stellar structure equations relate the EOS to
macroscopic observables including the mass M and radius R
of the neutron star. The dependence of the EOS on
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FIG. 2. Hypothetical states of matter accessed by neutron stars
and current or planned laboratory experiments (Large Hadron
Collider and other heavy-ion collision experiments, shown by
black arrows), in the parameter space of temperature against
baryon chemical potential (1–2 GeV corresponds to ∼1 − 6 times
the density of normal atomic nuclei). Quarkyonic matter: a
hypothesized phase where cold dense quarks experience confin-
ing forces (McLerran and Pisarski, 2007; Fukushima and
Hatsuda, 2011). The stabilizing effect of gravitational confine-
ment in neutron stars permits long-time-scale weak interactions
(such as electron captures) to reach equilibrium, generating
matter that is neutron rich [see Fig. 2 of Watts et al. (2015)]
and may involve matter with strange quarks. This means that
neutron stars access unique states of matter that can be created
only with extreme difficulty in the laboratory: nuclear super-
fluids, strange matter states with hyperons, deconfined quarks,
and color superconducting phases.
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