Report B06

Neutrinos and Supernova Nucleosynthesis

A. Sieverding

TECHNISCHE UNIVERSITÄT DARMSTADT

SFB 1245 Workshop October 5th 2017

Outline

Introduction

• The role of neutrinos in Supernova explosions

Results

- Mircrophysics for Supernova explosions
- Neutrino nucleosynthesis
- The ν process in 2D
- Nucleosynthesis in neutrino driven winds

The Challenge of Nucleosynthesis

SFB

The Challenge of Nucleosynthesis

Neutrinos and Supernovae

- Massive stars form an Fe core
- Core collapse and bounce
- Bounce shock stalls
- Core emits neutrinos
- Neutrinos can revive the shock
- and influence the nucleosynthesis in outer layers of SNe

Schematic structure of a massive star

The ν driven mechanism

- Neutrinos deposit energy behind the stalled shock
- Multi-D effects and High neutrino luminosities L_ν favor explosions

• Three dimensional supernova simulations are very sensitive to variations of 10-20% in neutrino opacities (*Melson et al. 2015*)

• Most studies focus on neutral current neutrino-nucleon scattering:

$$\frac{1}{V}\frac{d\sigma}{d\Omega} \approx \frac{G_F^2 E_\nu^2}{16\pi^2} \left[c_a^2 (3 - \cos\theta) S_A + c_\nu^2 (1 + \cos\theta) S_V \right]$$

Reduction due to strangeness contribution to axial-vector coupling constant (*Melson et al. 2015, Hobbs et al. 2016*):

$$c_a = \pm g_A - g_s, \quad g_s = -0.103 \pm 0.013$$

- Reduction of structure factors due to correlations at low densities (Virial expansion *Horowitz et al. 2017*)
- Additional degrees of freedom: muons, pions, hyperons, ...

"Muonization" of the core

100ms post bounce

• Muons have a relatively high mass $m_{\mu}c^2 = 105.66$ MeV

A. Lohs (2015)

2017

A. Sieverding

Impact on 2D simulations

• Radial profile at 400 ms after bounce

- Six flavor neutrino transport with muonic reactions
- Appearance of net μ^- abundance

Impact on 2D simulations

• Angle averaged entropy for a 20 $$M_{\odot}$$ star with and without muons

- Six flavor neutrino transport with muonic reactions
- Appearance of net μ⁻ abundance
- Thermal energy is converted into muon rest mass energy
- Electron degeneracy is reduced
- Proto-neutron star shrinks faster
- Increased neutrino luminosity and energy
- Can turn a non-exploding model into an exploding one

2D simulations: shock evolution

- Inclusion of muons favors the explosion
- Strangeness corrections also favor explosions
- Role of virial correlations uncertain.

Neutrino Luminosities

Bollig et al. 2017 (arXiv:1706.04630)

• $\bar{\nu}_{\mu}$ luminosities and energies are increased

A. Sieverding

Neutrino Luminosities

- High neutrino energies and Luminosities during the early phase
- Emission of 10⁵⁸ neutrinos from the collapsing core
- Neutrino emission continues for 10s
- Energies decrease
- Neutrinos irradiate the outer layers of the star

Wu et al. 2015

Neutrino nucleosynthesis

α

- $\langle E_{
 u}
 angle pprox 8-20~{
 m MeV}$
 - ► Inverse β-decay
 - Particle evaporation
 - Capture of spallation products
- 1D artificial explosions (Woosley et al. 2007)
- Suitable for nucleosynthesis studies
- Explosion energy $E_{
 m expl} = 1.2 imes 10^{51} {
 m erg}$

Charged-current (CC) $v_{e,}v_{e}$ $v_{e,}v_{e}$ A B p n α Neutral-current (NC) v_{x} v_{x} A v_{x} $v_$

Modeling the neutrino emission

 $L_
u \propto e^{-t/ au}$, Fermi-Dirac spectrum, constant neutrino energies

Neutrino-nucleus interactions in the outer layers produce several key isotopes (Woosley+ 1990, Heger+ 2005, Suzuki+ 2013)

Product	Parent	Reaction
⁷ Li	⁴ He	4 He $(\nu, \nu' p)^{3}$ H $(\alpha, \gamma)^{7}$ Li
		${}^{4}He(u, u'n){}^{3}He(lpha,\gamma){}^{7}Be(e^{-}, u_{e}){}^{7}Li$
¹¹ B	¹² C	12 C $(\nu, \nu' n)^{11}$ C $(\beta^+)^{11}$ B,
		$^{12}C(\nu,\nu'\rho)^{11}B$
¹⁵ N	¹⁶ O	$^{16}{ m O}(u, u'n)^{15}{ m O}(eta^+)^{15}{ m N}$,
		$^{16}{ m O}(u, u' ho)^{15}{ m N}$
¹⁹ F	²⁰ Ne	$^{20}{\sf Ne}(u, u'n)^{19}{\sf Ne}(eta^+)^{19}{\sf F},$
		$^{20}Ne(u, u' ho)^{19}F$
¹³⁸ La	¹³⁸ Ba	$^{138}Ba(u_e,e^-)^{138}La$,
		$^{138}{\sf Ba}(u_e,e^-n)^{137}{\sf La}(n,\gamma)^{138}{\sf La}$
¹⁸⁰ Ta	¹⁸⁰ Hf	$^{180}{ m Hf}(u_e,e^-)^{180}{ m Ta}$

Neutrino-nucleus interactions in the outer layers produce several key isotopes (Woosley+ 1990, Heger+ 2005, Suzuki+ 2013)

Product	Parent	Reaction
⁷ Li	⁴ He	4 He $(\nu, \nu' p)^{3}$ H $(\alpha, \gamma)^{7}$ Li
		${}^{4}He(u, u'n){}^{3}He(lpha,\gamma){}^{7}Be(e^{-}, u_{e}){}^{7}Li$
¹¹ B	¹² C	12 C $(\nu, \nu' n)^{11}$ C $(\beta^+)^{11}$ B,
		$^{12}C(\nu,\nu'\rho)^{11}B$
¹⁵ N	¹⁶ O	16 O($ u, \nu' n$) 15 O(β^+) 15 N,
		$^{16}O(u, u' ho)^{15}N$
¹⁹ F	²⁰ Ne	$^{20}{\sf Ne}(u, u'n)^{19}{\sf Ne}(eta^+)^{19}{\sf F}$,
		$^{20}Ne(u, u' ho)^{19}F$
¹³⁸ La	¹³⁸ Ba	$^{138}Ba(u_e,e^-)^{138}La,$
		$^{138}{ t Ba}(u_e,e^-n)^{137}{ t La}(n,\gamma)^{138}{ t La}$
¹⁸⁰ Ta	¹⁸⁰ Hf	$^{180}{ m Hf}(u_e,e^-)^{180}{ m Ta}$

- So far studies have assumed large average neutrino energies
- Modern supernova simulations predict lower average energies

High energies	Low energies
$\langle E_{ u_e} angle = 12.6 { m MeV}$	$\langle E_{ u_e} angle = 8.8 \; { m MeV}$
$\langle E_{ar{ u}_e} angle = 15.8 \; { m MeV}$	$\langle E_{ar{ u}_e} angle = 12.6 \; { m MeV}$
$\langle \textit{E}_{ u_{\mu, au}} angle =$ 18.9 MeV	$\langle \textit{E}_{ u_{\mu, au}} angle =$ 12.6 MeV

- So far studies have assumed large average neutrino energies
- Modern supernova simulations predict lower average energies

 $\begin{array}{lll} \mbox{High energies} & \mbox{Low energies} \\ \langle E_{\nu_e} \rangle = 12.6 \mbox{ MeV} & \langle E_{\nu_e} \rangle = 8.8 \mbox{ MeV} \\ \langle E_{\bar{\nu}_e} \rangle = 15.8 \mbox{ MeV} & \langle E_{\bar{\nu}_e} \rangle = 12.6 \mbox{ MeV} \\ \langle E_{\nu_{\mu,\tau}} \rangle = 18.9 \mbox{ MeV} & \langle E_{\nu_{\mu,\tau}} \rangle = 12.6 \mbox{ MeV} \end{array}$

- So far studies have assumed large average neutrino energies
- Modern supernova simulations predict lower average energies

High energies

Low energies $\langle E_{
u_e}
angle = 12.6 \,\, {
m MeV} \qquad \langle E_{
u_e}
angle = 8.8 \,\, {
m MeV}$ $\langle E_{\bar{\nu}_e} \rangle = 15.8 \text{ MeV} \qquad \langle E_{\bar{\nu}_e} \rangle = 12.6 \text{ MeV}$ $\langle E_{\nu_{\mu}\tau} \rangle = 18.9 \text{ MeV} \quad \langle E_{\nu_{\mu}\tau} \rangle = 12.6 \text{ MeV}$ Yields normalized to ¹⁶O and averaged over initial mass function

Nucleus	no ν	Low	High
		energies	energies
⁷ Li	0.002	0.07	0.45
¹¹ B	0.008	0.36	1.54
¹⁵ N	0.05	0.07	0.13
¹⁹ F	0.12	0.19	0.33
¹³⁸ La	0.12	0.59	1.29
¹⁸⁰ Ta	0.19	0.49	0.88

Sieverding et al., in preparation

Production factor

•
$$P_{A,\text{normalized}} = \left(\frac{X_A}{X_A^{\odot}}\right) / \left(\frac{X_{16_0}}{X_{16_0}^{\odot}}\right)$$

- So far studies have assumed large average neutrino energies
- Modern supernova simulations predict lower average energies

 $\begin{array}{ll} \mbox{High energies} & \mbox{Low energies} \\ \langle E_{\nu_e} \rangle = 12.6 \mbox{ MeV} & \langle E_{\nu_e} \rangle = 8.8 \mbox{ MeV} \\ \langle E_{\bar{\nu}_e} \rangle = 15.8 \mbox{ MeV} & \langle E_{\bar{\nu}_e} \rangle = 12.6 \mbox{ MeV} \\ \langle E_{\nu_{\mu,\tau}} \rangle = 18.9 \mbox{ MeV} & \langle E_{\nu_{\mu,\tau}} \rangle = 12.6 \mbox{ MeV} \end{array}$

- ⁷Li and ¹⁵N barely produced by the ν process
- ¹¹B consistent with expected yields from cosmic rays (Austin et al. 2011)
- ¹⁹F is expected to be produced mainly in AGB stars
- ¹³⁸La and ¹⁸⁰Ta have also contributions from s process.

Yields normalized to ¹⁶O and averaged over initial mass function.

erer innera			
Nucleus	no ν	Low	High
		energies	energies
⁷ Li	0.002	0.07	0.45
¹¹ B	0.008	0.36	1.54
¹⁵ N	0.05	0.07	0.13
¹⁹ F	0.12	0.19	0.33
¹³⁸ La	0.12	0.59	1.29
¹⁸⁰ Ta	0.19	0.49	0.88

Sieverding et al., in preparation

Production factor

•
$$P_{A,\text{normalized}} = \left(\frac{X_A}{X_A^{\odot}}\right) / \left(\frac{X_{16_0}}{X_{16_0}^{\odot}}\right)$$

Sensitivity to Supernova dynamics

 So far, only cooling phase taken into account for the ν process • 3D simulations show delayed explosions

CER .

• High neutrino energies during burst and accretion

Outline

Introduction

• The role of neutrinos in Supernova explosions

Results

- Mircrophysics for Supernova explosions
- Neutrino nucleosynthesis
- The ν process in 2D
- Nucleosynthesis in neutrino driven winds

Production of ¹¹B

- Si shell (NSE)
 - \blacktriangleright α -rich freeze-out
 - ► Spallation of ⁴He
- O/Ne shell
 - Production from ¹²C and ¹⁶O

C/O shell

Production from ¹²C

4 He shell

Spallation of ⁴He

- Possibly stronger exposure due to convective motion
- 2D axisymmetric simulation with CHIMERA (ORNL group, Bruenn et al. 2016, Harris et al. 2017)
- Nucleosynthesis calculations with lagrangian tracer particles
- \bullet based on a non-rotating 12 M_{\odot} progenitor of solar metallicity (Woosley et al. 2007)
- Neutrino fluxes and energies from the simulation calculated with a multi-group flux-limited diffusion method

2D effects on ¹¹B production

Neutrino Nucleosynthesis

A. Sieverding

Status CCSN Simulations

- Implement Approximate Neutrino scheme ASL (Perego et al 2016) — Done!
- Extend Simulation Domain to low temperature and density (Yasin) Done!
- Place tracers on output (Witt) Done!
- Cut inner zone in preparation
- Comparison ASL vs M1 (Mattes et al. in preparation)
- Simulations up to several seconds in production

Outline

Introduction

• The role of neutrinos in Supernova explosions

Results

- Mircrophysics for Supernova explosions
- Neutrino nucleosynthesis
- The ν process in 2D
- Nucleosynthesis in neutrino driven winds

Nucleosynthesis in neutrino driven winds

MC Sensitivity study in neutron rich winds

J. Bliss et al. in preparation

- Independently vary each (α, n) reaction rate between Fe and Rh by a random factor
- 10,000 Monte Carlo runs
- Representative trajectory for ν driven winds
- MC one & MC two: impact on Z=36-39
 - $\blacktriangleright \rightarrow$ important for wind nucleosynthesis
- MC three: impact on Z=28-35
 - \blacktriangleright \rightarrow relevant for explosive nucleosynthesis

Monte Carlo Sensitivity study in neutron rich winds

- ⁸²Ge(α, n), ⁸⁴Se(α, n),
 ⁸⁵Se(α, n) significantly influence the abundances for Z=36-39
- Measurement of ${}^{85}\text{Ga}(\alpha,n)$ at ReA3 (NSCL/MSU) in July 2016
- Accepted proposal for measurement of ⁸⁵Br(α, n)

J. Bliss et al. in preparation

Weber et al. (2008)

- vp process produces p-nuclei
- Measurement of ⁷⁹Υ, ⁸¹Zr, ⁸²Zr, ⁸³Nb, ⁸⁴Nb at the Cooler Storage Ring (CSR) in Lanzhou

Y. M. Xing et al. (submitted)

Neutrino Nucleosynthesis	A. Sieverding	
Neutrino Nucleobynthebio	, ti biererang	

νp with updated experimental masses

SFB 1245

- $\bullet\,$ Masses of ^{82}Zr and ^{84}Nb measured for the first time
- Improved values for ⁷⁹Y, ⁸¹Zr and ⁸³Nb
- Impact on the reaction rates relevant for the νp process

νp with updated experimental masses

- Masses of ⁸²Zr and ⁸⁴Nb measured for the first time
- Improved values for ⁷⁹Y, ⁸¹Zr and ⁸³Nb
- Impact on the reaction rates relevant for the νp process

- Details of the microphysics of hot and dense matter are relevant for Supernova explosions
- Muon creation in the core helps the explosion

- Details of the microphysics of hot and dense matter are relevant for Supernova explosions
- Muon creation in the core helps the explosion
- Study of neutrino induced nucleosynthesis for piston driven explosions in 1D with improved neutrino-nucleus cross-sections and modern estimates for neutrino energies
- Study of the ν process with neutrino properties consistent with the underlying explosion model in 2D

- Details of the microphysics of hot and dense matter are relevant for Supernova explosions
- Muon creation in the core helps the explosion
- Study of neutrino induced nucleosynthesis for piston driven explosions in 1D with improved neutrino-nucleus cross-sections and modern estimates for neutrino energies
- Study of the ν process with neutrino properties consistent with the underlying explosion model in 2D
- Monte Carlo Sensitivity study for (α, n) reaction rates to guide future experiments
- Study the effect of nuclear masses on νp process nucleosynthesis in neutrino driven winds
 2017 Neutrino Nucleosynthesis
 A. Sieverding

Thanks for your Attention

A. Arcones, G. Martínez-Pinedo J. Bliss, M. Eichler, J. Keller, D. Martin, C. Mattes, M. Reichert, A. Sieverding, M. Witt, H. Yasin