HIyS and S-DALINAC experiments elucidating weak processes

Joachim Enders, Volker Werner, Udo Gayer, Philipp C. Ries

TECHNISCHE UNIVERSITÄT DARMSTADT

Supported by the Deutsche Forschungsgemeinschaft (German Research Foundation) through research grant **SFB 1245**

Deutsche Forschungsgemeinschaft

Neutrinoless double-beta decay

Fig. From: F. T. Avignone III, S. R. Elliott and J. Engel, Rev. Mod. Phys. **80** (2008)

WIMP – Matter interaction

Neutrinoless double-beta decay

Fig. From: F. T. Avignone III, S. R. Elliott and J. Engel, Rev. Mod. Phys. **80** (2008)

WIMP – Matter interaction

Fig. from: M. Hoferichter, P. Klos, J. Menéndez and A. Schwenk Phys. Rev. Lett. **119** (2017) 181803

Direct detection experiments

Decay rates Cross sections

Neutrinoless double-beta decay

Fig. From: F. T. Avignone III, S. R. Elliott and J. Engel, Rev. Mod. Phys. **80** (2008)

WIMP – Matter interaction

Fig. from: M. Hoferichter, P. Klos, J. Menéndez and A. Schwenk Phys. Rev. Lett. **119** (2017) 181803

Direct detection experiments

Decay rates Cross sections

Fundamental physics information

Neutrino- and WIMP Masses, couplings, ...

Neutrinoless double-beta decay

Fig. From: F. T. Avignone III, S. R. Elliott and J. Engel, Rev. Mod. Phys. **80** (2008)

WIMP – Matter interaction

Neutrinoless double-beta decay

Fig. From: F. T. Avignone III, S. R. Elliott and J. Engel, Rev. Mod. Phys. **80** (2008)

WIMP – Matter interaction

Neutrinoless double-beta decay

Fig. From: F. T. Avignone III, S. R. Elliott and J. Engel, Rev. Mod. Phys. **80** (2008)

WIMP – Matter interaction

Neutrinoless double-beta (0vββ) decay

⁴⁸Ca: I. Ogawa et al., Nucl. Phys. A730 (2004)
215 (ELEGANT IV)
⁷⁶Ge: M. Agostini et al., Phys. Rev. Lett. 111
(2013) 122503 (GERDA)
⁸²Se: R. Arnold et al., Phys. Rev. Lett. 95
(2005) 182302 (NEMO-3)
¹⁰⁰Mo: R. Arnold et al., Phys. Rev. D 89 (2014)
111101(R) (NEMO-3)
¹³⁶Xe: J. Albert et al., Nature 510 (2014) 229
(EXO-200)
¹⁵⁰Nd: J. Argyriades et al., Phys. Rev. C 80
(2009) 032501 (NEMO-3)

⁴⁸Ca: I. Ogawa et al., Nucl. Phys. A730 (2004) 215 (ELEGANT IV)
⁷⁶Ge: M. Agostini et al., Phys. Rev. Lett. 111 (2013) 122503 (GERDA)
⁸²Se: O. Azzolini et al., Phys. Rev. Lett. 120 (2018) 232502 (CUPID-0)
¹⁰⁰Mo: R. Arnold et al., Phys. Rev. D 89 (2014) 111101(R) (NEMO-3)
¹³⁶Xe: J. Albert et al., Nature 510 (2014) 229 (EXO-200)
¹⁵⁰Nd: J. Argyriades et al., Phys. Rev. C 80 (2009) 032501 (NEMO-3)

PHYSICAL REVIEW LETTERS 120, 232502 (2018)

Editors' Suggestion

O. Azzolini,¹ M. T. Barrera,¹ J. W. Beeman,² F. Bellini,^{3,4,*} M. Beretta,^{5,6} M. Biassoni,⁶ C. Brofferio,^{5,6} C. Bucci,⁷

• Observables for shape coexistence?

- > Observables for shape coexistence?
 - Transitions between low-lying 0⁺ states

- > Observables for shape coexistence?
 - Transitions between low-lying 0⁺ states
 - Decay of 1⁺ mixed-symmetry (MS) states ("scissors mode")

- > Observables for shape coexistence?
 - Transitions between low-lying 0^+ states \rightarrow (e,e')
 - Decay of 1⁺ mixed-symmetry (MS) states ("scissors mode") \rightarrow (γ , γ ')

- Observables for shape coexistence?
 - Decay of 1⁺ mixed-symmetry (MS) states ("scissors mode")
 - $\rightarrow \text{Schematic calculation in Interacting Boson Model (IBM)}_{F. Iachello and A. Arima, The interacting boson model, Cambridge University Press (1987)} <math>\hat{H} = s(\hat{n}_{1} + \hat{n}_{2}) + \kappa(\hat{O}^{\chi} + \hat{O}^{\chi}) \cdot (\hat{O}^{\chi} + \hat{O}^{\chi}) + \lambda \hat{M}$
 - $\hat{H} = \varepsilon (n_{d,\pi}^{\hat{}} + n_{d,\nu}^{\hat{}}) + \kappa (\hat{Q}_{\pi}^{\chi} + \hat{Q}_{\nu}^{\chi}) \cdot (\hat{Q}_{\pi}^{\chi} + \hat{Q}_{\nu}^{\chi}) + \lambda M_{\pi\nu}$

Experimental Program for 0νββ Decay

(γ,γ') Experiments - Facility

High-Intensity Gamma-Ray Source (HIγS) @ Duke University
 → Quasi-monoenergetic, linearly polarized photon beam

(γ,γ') Experiments - Facility

High-Intensity Gamma-Ray Source (HIγS) @ Duke University
 → Quasi-monoenergetic, linearly polarized photon beam

(γ,γ') Experiments – Setups

(y,y') Experiments

> Systematic scan of dipole response

(y,y') Experiments

> Systematic scan of dipole response

(y,y') Experiments

> Systematic scan of dipole response

⁸²Se Experiment – Spectra

⁸²Se Experiment – Spectra

⁸²Se Experiment – Spectra

⁸²Se Experiment – Angular Distributions

N. Pietralla et al., Phys. Rev. Lett. 88, 012502 (2001)

⁸²Se Experiment – Angular Distributions

N. Pietralla et al., Phys. Rev. Lett. 88, 012502 (2001)

⁸²Se Experiment – Sensitivity

> Sensitivity to elastic transitions

> Bremsstrahlung: ~36 h

V. Werner, Diplomarbeit, Universität zu Köln (2002)

⁸²Se Experiment – Sensitivity

Sensitivity to elastic transitions

> Bremsstrahlung: ~36 h

V. Werner, Diplomarbeit, Universität zu Köln (2002)

⁸²Se Experiment – Sensitivity

> Sensitivity to elastic transitions

> Bremsstrahlung: ~36 h

V. Werner, Diplomarbeit, Universität zu Köln (2002)

```
LCB @ HIyS : ~76 h
```


⁸²Se - Discussion

⁸²Se - Discussion

- Shell model calculations using the code
 NuShellX
- jun45 interaction in jj44 model space

05/07/2018 | CRC Workshop 2018 | B03 | Udo Gayer | Pietralla Group | 39

Shell model calculations using the code
 NuShellX

jun45 interaction in jj44 model space

$$\hat{O}(M1) \sum_{i} g_{I}^{(i)} \hat{I}_{i} + g_{s}^{(i)} \hat{s}_{i}$$

NuShellX@MSU:

150Nd – Spectra

150Nd – Sensitivity

150Nd – Discussion

0vββ: Summary & Outlook

- High-precision data on decay of low-lying dipole strength in 0vββ candidates
- $^{\scriptscriptstyle >}~^{76}$ Ge, 82 Se and 82 Kr, (100 Mo), 150 Nd and 150 Sm

 Interpretation of data and impact on 0vββ decay

Weakly interacting massive particles (WIMPs)

WIMPs

https://wmap.gsfc.nasa.gov/universe/uni_matter.html

WIMPs as candidates for dark matter

WIMPs

https://wmap.gsfc.nasa.gov/universe/uni_matter.html

WIMPs as candidates for dark matter

CDMS (Ge): R. Agnese et al., Phys. Rev. Lett.
116 (2016) 071301
PandaX-II (Xe): A. Tan et al., Phys. Rev. Lett.
117 (2016) 121303
LUX (Xe): D. S. Akerib et al., Phys. Rev. Lett.
118 (2017) 021303
XENON1T (Xe): E. Aprile et al., Phys. Rev.
Lett. 119 (2017) 181301

Detection by (in)elastic scattering on atomic nuclei

WIMPs and Nuclear Structure

CDMS (Ge): R. Agnese et al., Phys. Rev. Lett. 116 (2016) 071301 PandaX-II (Xe): A. Tan et al., Phys. Rev. Lett. 117 (2016) 121303 LUX (Xe): D. S. Akerib et al., Phys. Rev. Lett. 118 (2017) 021303 XENON1T (Xe): E. Aprile et al., Phys. Rev. Lett. 119 (2017) 181301

Detection by (in)elastic scattering on atomic nuclei

M. Hoferichter et al., Phys. Rev. Lett. **119** (2017) 181803

TECHNISCHE WIMPs and Nuclear Structure UNIVERSITÄT DARMSTADT 11/2-236.18.88 D 0.1 $S_{n}(u)$ 1b + 2b inelastic ¹²⁹Xe $\mathbf{S}_{\mathbf{n}}(\mathbf{u})$ 1b + 2b inelastic $S_n(u)$ 1b + 2b elastic $S_n(u)$ 1b + 2b elastic 0.01 $S_{i}(\mathbf{u})$ A DESCRIPTION OF THE PARTY OF T 77777775757 0.001 11/2-163.9 11.84 D 10^{-4} 0.5 1.5 0.1 COLUMN STREET, ¹³¹Xe 5050505050202020505050505050505 0.01 -80.2 0.48 NS 1/2 + $S_i(u)$ -39.60.97 NS 3/2 +0.001 10^{-4} 0.0 STABLE 3/2+ -0.0 STABLE 1/2 +0 0.5 1.5 ¹²⁹Xe 54^{Xe}75 ¹³¹54^{Xe}77 u L. Baudis et al., Phys. Rev. D 88 (2013) 115014 http://www.nndc.bnl.gov

Experimental Program for WIMPs

LINTOTT electron spectrometer @ IKP, TU Darmstadt

Measure electron scattering form factors of ground – and excited states with high energy resolution

¹²⁹Xe Test Experiment

Test measurement at momentum transfer q = 0.32 fm⁻¹ (93°, 43.5 MeV)

Counts

¹²⁹Xe Test Experiment

Test measurement at momentum transfer q = 0.32 fm⁻¹ (93°, 43.5 MeV) Energy resolution limited by size of Xenon target

WIMPs: Summary & Outlook

 First test experiment @ LINTOTT with ¹²⁹Xe target not successful

TECHNISCHE

UNIVERSITÄT DARMSTADT

Improve geometry of gas target
 OR

-20

> Use Xe in solid chemical compound

0

20

Energie in keV

40

60

80

100

 Measurement at different momentum transfers

Counts

100

-40

HIyS and S-DALINAC experiments elucidating weak processes

Joachim Enders, Volker Werner, Udo Gayer, Philipp C. Ries

TECHNISCHE UNIVERSITÄT DARMSTADT

Supported by the Deutsche Forschungsgemeinschaft (German Research Foundation) through research grant **SFB 1245**

Deutsche Forschungsgemeinschaft

Backup

5

Excitation energy / MeV

spin + orbital

7

spin

6

⁸²Se - Discussion

0.2

0.1

0.0

-0.1

-0.2

Running sum

3

B(M1) / μ²_N

- Shell model calculations using the code NuShellX
- jun45 interaction in jj44 model space

Orbital

"Scissors mode"

Parity determination I

Parity determination II

Spin determination

Background simulation

Beam spectrum

⁸²Kr + ⁸²Se Experiment – Experiment

Krypton gas target

¹⁵⁴Gd - ¹⁵⁴Sm

- J. Beller et al., Phy. Rev. Lett. **111** (2013) 172501
 - High-precision measurement of decay channels of the scissors mode
 - Sensitivity to proton-neutron interaction, nuclear shape
 - Improved predictions of $0\nu\beta\beta$ decay rates using new data

Motivation Nuclear structure impact on $0\nu\beta\beta$ decay rates

TECHNISCHE UNIVERSITÄT DARMSTADT

- J. Beller et al., Phy. Rev. Lett. 111 (2013) 172501
 High-precision measurement of decay channels of the scissors mode
 - Sensitivity to proton-neutron interaction, nuclear shape
 - Improved predictions of $0\nu\beta\beta$ decay rates using new data

¹⁵⁰Nd results and IBM calculation

TECHNISCHE

UNIVERSITÄT DARMSTADT

February 27, 2018 | DPG Spring Meeting 2017 Münster HK 31.8 | IKP, TU Darmstadt | AG Pietralla | Udo Gayer | 65