
From Halo EFT to Reaction EFT

Lucas Platter 
University of Tennessee, Knoxville



Outlook

• What is Halo EFT


• Examples


• Frontiers in Halo EFT:


‣ D-wave systems


‣ Transfer reactions


• Outlook



Motivation
Halo Nuclei

[Nörtershäuser et al., PRL 102 (2009)]
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What is Halo EFT
• Halo EFT is designed for weakly bound nuclei


• degrees of freedom are


- tightly bound nucleus (e.g. alpha-particle) 

- weakly bound nucleons (protons or neutrons)


• Halo nuclei are emergent degrees of freedom 
along the driplines


• Nucleons can be in different partial waves with the 
core nucleus

Bertulani, Hammer, van Kolck 2002, Bedaque, Hammer, van Kolck 2003



Separation of scales

• Application of halo EFT guided by separation of 
2 scales, e.g.


‣ 1-nucleon separation energy of halo nucleon 
Sh divided by 1-nucleon separation of core Sc 

‣ core radius Rc  divided by halo radius Rh 

• core appears structureless at low energies


• can be applied to any system that possesses 
such a scale separation: not only traditional 
halo nuclei

7 fm



Formulation of EFT

• Express interactions as contact 
interactions (no exchange particles)


• use quantum field theory (whenever 
possible) for calculations  

• S-wave: 1 parameter at LO (one-
nucleon separation energy, effective 
range parameters, …) 

• higher partial waves: depends on 
power counting

EPJ Web of Conferences

All of these measurements can be addressed within the
Halo EFT we will use here. In this theory the s- and p-wave
states of the Beryllium-11 nucleus are generated by core-
neutron contact interactions. The theory does not get the
interior part of the nuclear wave function correct, but, by
construction, it reproduces the correct asymptotics of the
wave functions of these states:

u0(r) = A0 exp(��0r);

u1(r) = A1 exp(��1r)
 
1 +

1
�1r

!
, (6)

for the 504 keV and 184 keV states, respectively. As such,
it is not a method that is meant to compete with ab ini-

tio calculations of this halo nucleus (see, e.g. [8,9]) or of
10Be-n scattering [10]. But it could prove complementary
to such computations, since Halo EFT provides a way to
ensure that the long-distance properties of the halo are cor-
rectly taken care of.

The quantities �0 and �1 are determined by the neu-
tron separation energies of the states in question. At lead-
ing order (LO) in the expansion both A0 and A1 are fixed.
(In the case of the p-wave this is related to the theorem
discussed by Lee at the meeting [11].) At next-to-leading
order (NLO) both A0 and A1 receive corrections whose val-
ues must be determined from neutron-10Be scattering data.

2 Halo EFT for Beryllium-11

We use the “Halo EFT” developed in Refs. [12,13] to cal-
culate the properties of the Beryllium-11 nucleus. The de-
grees of freedom in our Halo EFT treatment are the 10Be
core and the neutron. The EFT expansion in this case is an
expansion in powers of !/Bhigh. Here Bhigh is, e.g. the ex-
citation energy of states in 10Be, and so is of order a few
MeV, and ! is the energy of the photon exciting the elec-
tromagnetic transition of interest.

2.1 Strong piece

In our LO calculation we include the strong s-wave and
p-wave interactions that lead to the shallow bound states
in the 11Be system through the incorporation of additional
spin-zero and spin-one fields:
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Here . . . represents additional p-wave interactions neces-
sary to maintain Gallilean invariance, while c and n are the

“core” and neutron fields. Hence, c is a bosonic field and
n a fermionic one. The field � represents the s-wave state
and ⇡ j the p-wave state.

2.2 Dressing the s-wave state

In order to treat the shallow s-wave state in the 10Be-neutron
system we adopt the counting that has been successfully
developed to treat shallow s-wave states in the nucleon-
nucleon system [14,15,16,17,18]. This can be implemented
by noting that then �nc coupling is dimensionful, and tak-
ing it to be of order Rhalo. Meanwhile nc loops will have a
typical size of order 1/Rhalo

1, and so such a counting man-
dates the resummation of nc loops when computing the �
propagator. This can be achieved through the Dyson equa-
tion shown in Fig. 1, which leads to:

D�(p) =
1

�0 + ⌘0[p0 � p2/(2Mnc)] � ⌃�(p)
, (8)

with ⌃�(p) the one-loop self-energy for the � field.

Fig. 1. Diagrammatic representation for the Dyson equation
which incorporates the one-loop nc dressing of the field repre-
senting the s-wave 10Be-n bound state in the theory. Here and
below the dashed line represents the field for the 10Be core, and
the thin solid line is the neutron. The thick grey line is the un-
dressed � propagator, and the thick black line is the dressed �
propagator.

This one-loop self-energy is calculated as:

⌃�(p) = �
g2

0mR

2⇡

2
66666664µ + i

s

2mR
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!377777775 , (9)

when computed in power-law divergence subtraction (PDS)
with a scale µ [15,16]. Here we have introduced the re-
duced and total masses of the neutron-core system:

Mnc = mn + mc; mR =
mnmc

mn + mc

. (10)

Substituting Eq. (9) into Eq. (8), we can set the pa-
rameters g0 and �0 by computing the s-wave neutron-core
scattering amplitude in the theory (7) (see Fig. 2):

t0(E) = g2
0D�(E, 0), (11)

in the two-body center-of-mass frame. This is then matched
to the e↵ective-range expansion in this channel:

t0(E) =
2⇡
mR

1
1/a0 � 1

2 r0k2 + ik
, (12)

1 In a suitable regularization scheme, e.g. power-law diver-
gence subtraction [15,16], this is true for both the real and imag-
inary parts of the loops.

Beryllium Lagrangian as example

Hammer & Phillips 2011



Practical matters

• Calculate diagrams directly with quantum field theory 
(propagators & vertices)

• Parameters in Lagrangian (interaction) are fixed from 
observables, e.g. binding energies, phaseshifts, effective range 
parameters

Few-Body Systems with Large Scattering Length

Recombination

EFT w/ Contact Interactions alone

Range Corrections

Outlook

The EFT with Contact Interactions alone

for a finite range potential the t-matrix can be written as

t(k) ⇠ 1

k cot � � ik

for su�ciently low energies k cot � can be expanded in powers of k
�! e↵ective range expansion

k cot � = �1

a
+

r

2
k2 + ... ,

or for a > 0 expand around the two-body bound state pole
� =

p
MB2

k cot � = �� +
r

2
(�2 + k2) + ...

Lucas Platter Universality in Few-Body Systems
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FIG. 8: Di↵erential B(E1) strength for Coulomb dissociation of Beryllium-11 into a neutron and
a 10Be nucleus, plotted versus the excess energy of the detected neutron E⇤, in MeV. The data
are from Ref. [5]. The theory curves have been folded with detector resolution. The red dashed
line is the leading-order Halo EFT prediction, which does not include any final-state interactions.
Final-state interactions, with the e↵ective range taking on a value fixed from the bound-to-bound
E1 transition strength, are included in the NLO result, which is shown in blue. The result of
Ref. [30] is the green dotted line, which essentially matches the solid blue line.

fm. This corresponds to specific assumptions about all the counterterms that appear in the
theory.

Note that A0/A
LO

0
= 1.3 increases the charge radius of the 11Be ground state to

hr2Ei
(�)
11Be

= 2.42 fm, (98)

which is certainly in agreement with the atomic-physics number (5) within the expected size
of NNLO corrections. This must be taken with a grain of salt, though, since the change in

23

Halo EFT Applications
• Neutron halo nuclei: 


• Beryllium-11 (Hammer & Phillips)


• Helium-6 (Ji, Elster & Phillips)


• Carbon-22 (Acharya, Ji & 
Phillips)


• Proton halo nuclei:


• Fluorine-17 (Ryberg, Forssen, 
Hammer & LP)
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Combine ab initio w/ Halo EFT

• ab initio can provide input 
parameters:


• proton-capture on Beryllium-7 
[Ryberg, Hammer, Forssen & LP 
2014, Zhang, Nollett & Phillips 2014 
& 2015]


• Calcium-62 halo [Hagen, Hagen, 
Hammer & LP 2014]

Figure 8: The S-factor of 7Be(p, �)8B as a function of the c.m. energy. The data are from Refs. [36–

43]. The solid line is the LO result of this work using input ANCs of Nollett et al..

squared as showed in Eq. (30). Thus, at threshold the only corrections are due to higher-

order operators that involve the photon field and these enter with additional powers of the

photon energy !. Momentum and energy conservation implies that ! ⇡ B+ p2

2mR
, where the

binding energy scales as k2
lo. We therefore estimate the error to be of order (klo/khi)2 ⇡ 8%.

These higher-order corrections will, however, influence the shape of the S-factor at larger

energies, i.e. in the region where comparison with data is possible. This results in an

additional uncertainty when attempting extrapolation to threshold energies. Note that this

extrapolation uncertainty is much more serious in potential-model descriptions for which

the error is not even quantified. Therefore, we present an alternative approach to constrain

the threshold S-factor from experimental data: namely to identify its correlation with the

previously discussed charge radius of 8B.

V. CORRELATING THE CHARGE RADIUS AND THE THRESHOLD S-

FACTOR

At this stage we are able to demonstrate the relationship between the 7Be(p, �)8B S-factor

at threshold and the 8B charge radius. Instead of using ground-state ANCs from microscopic

calculations or transfer experiments as input, we now let A2
1 +A2

2 be a free parameter. This

parameter is then used to explore correlations between the charge radius of 8B and the

20
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FIG. 2: (Color online.) 2d distribution for ✏1 (x-axis) and
L̄1 (y-axis). The shaded area is the 68% region. The inset
is the histogram and corresponding smoothed 1d PDF of the
quantity 0.33 L̄1/fm� ✏1.
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FIG. 3: (Color online.) The right panel shows the NLO S-
factor at di↵erent energies, including the median values (solid
blue curve). Shading indicates the 68% interval. The dashed
line is the LO result. The data used for parameter deter-
mination are shown, but have not been rescaled in accord
with our fitted {⇠i}. They are: Junghans et.al., BE1 and
BE3 [37] (filled black circle and filled grey circle), Filippone
et.al., [38] (open circle), Baby et.al., [39, 40] (filled purple di-
amond), and Hammache et.al., [41, 42] (filled red box). The
left panel shows 1d PDFs for S(0) (blue line and histogram)
and S(20 keV) (red-dashed line).

PDFs for S at E = 0 and 20 keV are singled out and
shown on the left of the figure: the blue line and his-
togram are for E = 0 and the red-dashed line is for
E = 20 keV. We found choices of the EFT-parameter
vector g (given in the supplemental material) that cor-
respond to natural coe�cients, produce curves close to
the median S(E) curve of Fig. 3, and have large values
of the posterior probability.

S(20 keV ) and the thermal reaction rate—Table I com-
piles median values and 68% intervals for the S-factor
and its first two derivatives, S0

/S and S
00
/S, at E = 0

S (eV b) S0/S (MeV�1) S00/S (MeV�2)

Median 21.33 [20.67] �1.82 [�1.34] 31.96 [22.30]

+� 0.66 [0.60] 0.12 [0.12] 0.33 [0.34]

�� 0.69 [0.63] 0.12 [0.12] 0.37 [0.38]

TABLE I: The median values of S, S0/S, and S00/S at E = 0
keV [E = 20 keV], as well as the upper and lower limits
of the (asymmetric) 68% interval. The sampling errors are
0.02%, 0.07%, 0.01% for median values, as estimated from⌦
X2 � hXi2

↵1/2
/
p
N with N = 2⇥ 104.

and 20 keV. Ref. [1] recommends S(0) = 20.8± 1.6 eV b
(quadrature sum of theory and experimental uncertain-
ties). Our S(0) is consistent with this, but the uncer-
tainty is more than a factor of two smaller. Ref. [1] also
provides e↵ective values of S0

/S = �1.5±0.1 MeV�1 and
S
00
/S = 11± 4 MeV�2. These are not literal derivatives

but results of quadratic fits to several plausible models
over 0 < E < 50 keV, useful for applications. Our values
are consistent, considering the large higher derivatives
(rapidly changing S

00) left out of quadratic fits.

The important quantity for astrophysics is in fact not
S(E) but the thermal reaction rate; derivatives of S(E)
are used mainly in a customary approximation to the
rate integral [1, 2, 50]. By using our S0 and S

00 in a Tay-
lor series for S(E) about 20 keV, then regrouping terms
and applying the approximation formula, we find a rate
(given numerically in the supplemental material) that
di↵ers from numerical integration of our median S(E)
by only 0.01% at temperature T9 ⌘ T/(109 K) = 0.016
(characteristic of the Sun), and 1% at T9 = 0.1 (relevant
for novae).

How accurate is NLO?—Our improved precision for
S(0) is achieved because, by appropriate choices of its
nine parameters, NLO Halo EFT can represent all the
models whose disagreement constitutes the 1.4 eV b un-
certainty quoted in Ref. [1]—including the microscopic
calculation of Ref. [5]. Halo EFT matches their S(E)
and phase-shift curves with a precision of 1% or better
for E < 0.5 MeV, and thus spans the space of models of
E1 capture in the LER [18].

The LO curve shown in Fig. 3 employs values of C1,
C2, a1, and a2 from the NLO fit. It di↵ers from the
NLO curve by < 2% at E = 0, and by < 10% at E =
0.5 MeV. This rapid convergence suggests that the naive
estimate of N2LO e↵ects in the amplitude, (k/⇤)2 ⇡ 4%,
is conservative. And indeed, we added a term with this
k-dependence to the model, allowing a natural coe�cient
that was then marginalized over, and found that it shifted
the median and error bars from the NLO result by at
most 0.2% in the LER. Finally, we estimate that direct
E2 and M1 contributions to S in the LER are less than
0.01%, and radiative corrections are around 0.01%.

Summary— We used Halo EFT at next-to-leading or-



EFT Frontier:  
D-wave halos

• non-traditional halos - guidance by scale separation 

• proposed power counting requires 2 counterterms (data points) 
at leading order, different scaling estimates for effective range 
parameters


• electromagnetic properties of Carbon-15 states (form factors, E2 
transition)


• universal correlations

Braun, Hammer, Roth 2018



Carbon-17

• Carbon-17 has 3 weakly bound 
states


• excitation energy of 
Carbon-16 is 1.8 MeV


➡ use EFT to describe this system

5/2+

16C+n 0.734(18)

1/2+

3/2+

0.332(1)
0.218(1)

0.0

• system hard for ab initio approaches (calculations exist w/ IT-
NCSM)

Braun, Hammer, LP 2018



E2 Transitions in C17

• M1 and E2 transitions possible between states in this system


• E2 transitions

2. Magnetic moments of the 3/2+ and 5/2+ states

In the case of the D-wave, the only contribution to the magnetic moment at LO is the two-body
current in Eq. (15), which corresponds to the last diagram in Fig. 3, and we obtain:

eQc

2Mnc
GM (q2) = ZdµNLd

M = �
µN L̃d

M

r2 + P2�22
, (19)

with

Zd = �
15⇡

m2

Rg
2
2

1

r2 + P2�22
and L̃d

M =
15⇡Ld

M

m2

Rg
2
2

. (20)

This yields for the magnetic form factor at LO:

d = �
L̃d
M

r2 + P2�22
, (21)

where d is again given in units of µN . Beyond LO we also need to consider the two loop diagrams in
Fig. 3. Therefore, we require additional counterterms to renormalize the corresponding divergences.
This makes predictions even harder, and for that reason, we do not calculate the NLO contribution
to the magnetic form factors for the D-wave state explicitly.

In general, the magnetic moment of the D-wave states will thus di↵er significantly from the
magnetic moment of the neutron since n is a NLO contribution.

IV. ELECTROMAGNETIC TRANSITIONS AND CAPTURE REACTIONS OF 17C

A. E2 transitions

The ground state and the two excited states of 17C have positive parity and di↵er at most by
2 units in total angular momentum. All states can therefore be connected by E2 transitions.

The transition strength for S ! D has been calculated at LO in Ref. [21] for the transition:

B(E2: 1/2+ ! 5/2+) = �
4

5⇡

Z2

effe
2

r20 + P20�220
�0


3�2

0
+ 9�0�20 + 8�2

20

(�0 + �20)3

�2
, (22)

where the e↵ective charge for 17C, Zeff = (m/Mnc)2Qc ⇡ 0.021 [29], comes out of the calcu-
lation automatically. At NLO, there is an unknown short-range contribution that enters via a
counterterm.

For the transition strength B(E2: 1/2+ ! 3/2+), we get the same result for the amplitude but
with di↵erent Clebsch Gordan coe�cients (leading to a relative factor of 3/2) and the appropriate
binding momentum and renormalization constant for the 3/2+ ground state:

B(E2: 1/2+ ! 3/2+) = �
8

15⇡

Z2

effe
2

r2 + P2�22
�0


3�2

0
+ 9�0�2 + 8�2

2

(�0 + �2)3

�2
. (23)

Following the approach in Ref. [21], we can also calculate the E2 transition forD ! D. However,
we do not display the result here since the relevant diagram diverges cubically and, therefore,
additional counterterms are required for this observable already at LO.
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we do not display the result here since the relevant diagram diverges cubically and, therefore,
additional counterterms are required for this observable already at LO.
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• depend on 2 binding energies & 1 combination of ERE 
parameters


• Opportunity for ab initio or shell model calculations



Capture reactions w/ C17
• E1 capture and photodisassociation into  

S-wave


• E1 capture into D-wave states

Figure 6. Left panel: E1 capture cross section into 17C as a function of the center-of-mass energy Ecm.
Right panel: E1 photodissociation cross section as a function of Ecm. The solid (blue) line denotes the LO
result and the dashed (red) lines show an estimate of the NLO corrections.

+

Figure 7. Relevant diagrams for E1 capture to D-wave states at LO. For a more detailed description of the
lines, see Fig. 2.

2. E1 capture into the 3/2+ and 5/2+ states

In this section, we calculate E1 neutron capture to the 3/2+ D-wave ground state and 5/2+

excited state of 17C. The relevant diagrams that emerge from minimal substitution in our La-
grangian (2) are shown in Fig. 7 . They yield
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with the charge of the core Qc, the photon momentum k, the relative momentum of the incoming
nc pair p, the photon polarization i and JM denoting the spin and polarization of the D-wave.
Note that the neutron spin is una↵ected by the E1 capture process up to this order. If we project
out the J = 3/2 part of the amplitude M (3/2) and average and sum over incoming and outgoing
spins, respectively, we finally find the di↵erential cross section for the E1 capture process at LO
( m
Mnc

k ⌧ p):
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Figure 5. Relevant diagram contributing to the E1 capture amplitude to S-wave states at LO. For a more
detailed description of the lines, see Fig. 2 and 3.

diagram of the photodissociation reaction considered in Ref. [12]. At LO, the amplitude is

�̄i =
✏i · p
M

p
Z�eQcg02mR

�2
0
+ (p�

m
Mnc

k)2
, (39)

where i is the photon polarization, p denotes the relative momentum of the nc pair and k the
photon momentum. Throughout this section we choose the nc pair to be traveling in ẑ direction
which means that p = |p|ez. Since m/Mnc is small and it follows from power counting that
p ⇠ �0 ⇠ Mlo and k ⇠ M2

lo
/Mhi, we can neglect the recoil term ⇠ p · k in the denominator. By

averaging over the neutron spin and photon polarization and summing over the outgoing S-wave
spin we obtain at LO ( m

Mnc
k ⌧ p):
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)
, (40)

with k ⇡ (p2 + �2
0
)/2mR, k̂ · p̂ = cos ✓, Zeff = (mR/M)Qc ⇡ 0.353 and

|M
(1/2)

|
2 =

1

2

X

i,ms,M

|�̄i
|
2�ms,M , (41)

where ms denotes the neutron spin and M the S-wave polarization. Since the neutron spin is
una↵ected by this reaction, ms and M have to be the same. After integration over d⌦ we get

�cap =
mR

⇡

k

p
|M

(1/2)
|
2 =

8e2Z2

eff

3m2

R

p�0
(p2 + �2

0
)
=

32⇡↵Z2

eff

3m2

R

p�0
(p2 + �2

0
)
, (42)

with the fine-structure constant ↵ = e2/(4⇡). Exploiting the detailed balance theorem, the capture
cross section �cap can be related to the photodissociation cross section �dis [32],

�cap =
2(2j17C + 1)

(2jn + 1)(2jc + 1)

k2

p2
�dis = 2

k2

p2
�dis . (43)

Our numerical results for the E1 capture into 17C and photodissociation of 17C obtained using
Eq. (43) at LO are shown in Fig. 6. At NLO, there is an additional contribution from the e↵ective
range r0. By assuming that r0 scales as 1/Mhi, we can estimate the size of the NLO contribution
and add an error band to our LO results in Fig. 6.
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Figure 6. Left panel: E1 capture cross section into 17C as a function of the center-of-mass energy Ecm.
Right panel: E1 photodissociation cross section as a function of Ecm. The solid (blue) line denotes the LO
result and the dashed (red) lines show an estimate of the NLO corrections.

Figure 7. Relevant diagrams for E1 capture to D-wave states at LO. For a more detailed description of the
lines, see Fig. 2.

2. E1 capture into the 3/2+ and 5/2+ states

In this section, we calculate E1 neutron capture to the 3/2+ D-wave ground state and 5/2+

excited state of 17C. The relevant diagrams that emerge from minimal substitution in our La-
grangian (2) are shown in Fig. 7 . They yield

�̄i
msJM =

X

ms0ml

✓
1

2
ms0 2ml

���� J M

◆X

↵�

(1↵ 1�| 2ml)
p
Zdg2eQc

2mR

M
⇥

2

64

⇣
p�

m
Mnc

k
⌘

↵

⇣
p�

m
Mnc

k
⌘

�

�2
2
+
⇣
p�

m
Mnc

k
⌘2

✏i · p+ ✏i↵

✓
p� �

m

2Mnc
k�

◆
3

75 �msm0
s
, (44)

with the charge of the core Qc, the photon momentum k, the relative momentum of the incoming
nc pair p, the photon polarization i and JM denoting the spin and polarization of the D-wave.
Note that the neutron spin is una↵ected by the E1 capture process up to this order. If we project
out the J = 3/2 part of the amplitude M (3/2) and average and sum over incoming and outgoing
spins, respectively, we finally find the di↵erential cross section for the E1 capture process at LO
( m
Mnc

k ⌧ p):

d�cap

d⌦
=

mR

4⇡2

k

p

���M(3/2)
���
2

=
15

2⇡

�
p2 + �2

2

�

m2

Rp

e2Z2

eff

�r2 � P2�22
X(✓) =

30↵Z2

eff

�r2 � P2�22

�
p2 + �2

2

�

m2

Rp
X(✓) , (45)
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Figure 8. Relevant diagrams contributing to M1 capture at LO. For a more detailed description of the lines,
see Fig. 2 and 3.

with the fine-structure constant ↵, Zeff = (mR/M)Qc and

|M
(3/2)

|
2 =

1

2

X

i,ms,M

|�̄i
ms3/2M |

2 , (46)

and

X(✓) =
1

15

"
2p2(13� cos(2✓)) +

4p4 sin2(✓)�
�2
2
+ p2

�
 

p2�
�2
2
+ p2

� + 2

!#
. (47)

After integrating over d⌦ we find for the total cross section:

�cap =
↵Z2

eff

�r2 � P2�22

32⇡p

3m2

R

�
5�4

2
+ 11p4 + 14�2

2
p2
�

�
�2
2
+ p2

� . (48)

From an experimental measurement of the capture (or dissociation) cross section we can extract
therefore the numerical value of the combination of D-wave e↵ective range parameters 1/(�r2 �
P2�22). For the 5/2+ state we project out the J = 5/2 part of the amplitude M (5/2) and obtain:

d�cap

d⌦
=

mR

4⇡2

k

p

���M(5/2)
���
2

=
45

4⇡

�
p2 + �2

20
�

m2

Rp

e2Z2

eff

�r20 � P20�220
X(✓) =

45↵Z2

eff

�r20 � P20�220

�
p2 + �2

20
�

m2

Rp
X(✓) ,

(49)

where X(✓) is the same as for the J = 3/2 cross section. After integrating over d⌦ we find for the
total cross section:

�cap =
↵Z2

eff

�r20 � P20�220

16⇡p

m2

R

�
5�4

20 + 11p4 + 14�2
20p

2
�

�
�2
20 + p2

� , (50)

which is the same result as the J = 3/2 cross section multiplied by a factor of 3/2 and di↵erent
numerical values for �2, r2 and P2.

D. M1 neutron capture on 16C

1. M1 capture into the 1/2+ state

Similar to E1 capture, we can calculate the M1 capture cross section. The main di↵erence
between both processes is the parity conservation in the M1 matrix element. Therefore, the loop
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• prefactor as before 



M1 Transitions:

• M1 transitions measured and calculated (Smalley et al. 2017)


• zero at leading order in Halo EFT


• counterterm has to be fitted, for example

B. M1 transitions

1. S ! D

We will first consider the M1 transition strength from the 3/2+ ground state (D-wave) to the first
excited 1/2+ state (S-wave) in 17C since it was measured in Refs. [17, 18]. The experimental result
is small compared with typical M1 transitions strengths in nuclei, i.e. B(M1: 1/2+ ! 3/2+) =
1.04+0.03

�0.12 ⇥ 10�2µ2

N [17] or 0.58⇥ 10�2 W.U. expressed in Weisskopf units.
In the neutron-core picture of Halo EFT, the M1 transition from a D-wave to an S-wave state

is forbidden for one-body currents which is in agreement with the experimental suppression of the
transition. The non-zero transition strength can only be accounted for by a two-body current which
takes short ranged (core) physics into account. We therefore add the gauge-invariant counterterm

LM = �µNL�d
M1�

†
mdm0

✓
1

2
m1i

����
3

2
m0

◆
Bi . (24)

By rescaling the fields to absorb unnaturally large coupling constants, leading to [�̃] = 2, [d̃] = 0,
and using naive dimensional analysis for the rescaled fields [30], we find L�d

M1
⇠ Mhil�dM1

g0g2m2

R with
l�dM1

of order one. To obtain the magnetic transition amplitude we calculate the vertex function

�mm0i =

✓
1

2
m1i

����
3

2
m0

◆
µN L̃�d

M1✏ijkkj , (25)

with L̃�d
M1

=
p
30⇡

m2
Rg0g2

L�d
M1

. If we consider the case m = �m0 = ±1/2 and choose the photon to be

traveling in ẑ direction, we find

�̄±⌥,⌥1 = ⌥
µN
p
3
L̃�d
M1! . (26)

This yields for the M1 transition strength:

B(M1: 1/2+ ! 3/2+) =
3

4⇡
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�̄±⌥,⌥1
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◆2

= �
1

4⇡

�0
r2 + P2�22
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L̃�d
M1
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µ2

N . (27)

Moreover, combining Eqs. (27) and (23), we find a correlation between B(E2) and B(M1):

B(E2: 1/2+ ! 3/2+) =
32

15
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effe
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L̃�d
M1
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µ2

N


3�2

0
+ 9�0�2 + 8�2

2

(�0 + �2)3

�2
B(M1: 1/2+ ! 3/2+) . (28)

If we use the experimental result for B(M1: 1/2+ ! 3/2+) = 1.04+0.03
�0.12⇥10�2µ2

N and employ naive

dimensional analysis for the counterterm L̃�d
M1

⇠ Mhi ⇡ 0.28 fm�1, we can make a rough prediction
for B(E2),

B(E2: 1/2+ ! 3/2+) ⇡ 3⇥ 10�2 e2fm4 . (29)

Moreover, we can compare the M1 and E2 transition strengths for 17C if we look at the transition
rates [31],

T (R�) =
8⇡(�+ 1)

�[(2�+ 1)!!]2
k2�+1B(R�) , (30)
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• order of magnitude estimate



EFT Frontier:  
Transfer Reactions

• Consider now neutron-transfer reactions in halo EFT


• use 10Be(p,d)11Be as first application


• Diagrammatics lead to coupled integral equation (w/o Coulomb)

Tinel.

11Be

p

=

(inelastic scattering)

Tel.

10Be

d

=

(elastic scattering)

+

Tinel.⇤

Tel.⇤

• Faddeev equation for contact interactions (more complete 
dynamics than CDCC)

w/ Schmidt, Hammer



Observables
• adapt König et al. and include Coulomb into integral equation

• calculate transfer cross section 
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Outlook
• Halo EFT is considering more systems now (S-wave, P-wave, D-

wave)


• Only prerequisite for application is scale separation! 

• Observables are parameterized in terms of measurable parameters


• More counterterms in halos w/ higher partial waves but ab initio 
can help (NCSM, Coupled Cluster, IM SRG)


• Continuum accessible: capture reactions, transfer reactions/
optical potentials


• inelastic channels through open EFT (optical potentials)
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