Resonances, currents, and medium mass nuclei

Sebastian König

SFB 1245 Workshop 2017

Mainz

July 4, 2018

European Research Council

Signatures of few-body resonances in finite volume

P. Klos, SK, J. Lynn, H.-W. Hammer, and A. Schwenk, arXiv:1805.02029 [nucl-th]

Motivation

terra incognita at the doorstep...

• bound dineutron state not excluded by pionless EFT

Hammer + SK, PLB 736 208 (2014)

• recent indications for a three-neutron resonance state...

Gandolfi et al., PRL 118 232501 (2017)

• ... although excluded by previous theoretical work

Offermann + Glöckle, NPA 318, 138 (1979); Lazauskas + Carbonell, PRC 71 044004 (2005)

• possible evidence for tetraneutron resonance

Kisamori et al., PRL 116 052501 (2016)

conflicting theoretical results!

Hiyama et al., PRC 93 044004 (2016); Deltuva, PLB 782 238 (2018) Shirokov et al. PRL 117 182502(2016); Gandolfi et al., PRL 118 232501 (2017); Fossez et al., PRL 119 032501 (2017)

Resonances, currents, and medium mass nuclei - p. 3

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta)$$
, $\eta = \left(\frac{Lp}{2\pi}\right)^2$, $p = p(E(L))$

Lüscher, Nucl. Phys. B 354 531 (1991); ...

resonance contribution ~ avoided level crossing

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta)$$
, $\eta = \left(\frac{Lp}{2\pi}\right)^2$, $p = p(E(L))$

Lüscher, Nucl. Phys. B 354 531 (1991); ...

resonance contribution ~ avoided level crossing

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta)$$
, $\eta = \left(\frac{Lp}{2\pi}\right)^2$, $p = p(E(L))$

Lüscher, Nucl. Phys. B 354 531 (1991); ...

resonance contribution ~ avoided level crossing

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta)$$
, $\eta = \left(\frac{Lp}{2\pi}\right)^2$, $p = p(E(L))$

Lüscher, Nucl. Phys. B 354 531 (1991); ...

resonance contribution ~> avoided level crossing

Discrete variable representation

Needed: calculation of several few-body energy levels

• difficult to achieve with QMC methods

Klos et al., PRC 94 054005 (2016)

• direct discretization possible, but not very efficient

→ use a Discrete Variable Representation (DVR)

well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 87, 051301 (2013)

Main features

- potential energy matrix diagonal
- kinetic energy matrix sparse (in d > 1)...
- ... or implemented via Fast Fourier Transform

periodic boundary condistions ↔ plane waves as starting point

Three-body check

Take established three-body resonance from literature:

Fedorov et al., Few-Body Syst. P 33 153 (2003); Blandon et al., PRA 75 042508 (2007)

$$V(r) = V_0 \exp\left(-\left(\frac{r}{R_0}\right)^2\right) + V_1 \exp\left(-\left(\frac{r-a}{R_1}\right)^2\right)$$

$$V_0 = -55 \text{ MeV}, V_1 = 1.5 \text{ MeV}, R_0 = \sqrt{5} \text{ fm}, R_1 = 10 \text{ fm}, a = 5 \text{ fm}$$

- three spinless bosons with mass m = 939.0 MeV
- two- and three-body bound states at -6.76 MeV and -37.22 MeV
- three-body resonance at -5.31 i0.12 MeV (Blandon et al.), -5.96 i0.40 MeV (Fedorov et al.)

• fit inflection point(s) to extract resonance energy $\rightarrow E_R = -5.32(1)$ MeV

- shifted Gaussian 2-body potential
- note: no 2-body bound state!
- add short-range 3-body force

- shifted Gaussian 2-body potential
- onote: no 2-body bound state!
- add short-range 3-body force

- shifted Gaussian 2-body potential
- onote: no 2-body bound state!
- add short-range 3-body force

- shifted Gaussian 2-body potential
- note: no 2-body bound state!
- add short-range 3-body force

 \hookrightarrow possible to move three-body state \leftrightarrow spatially localized wf.

Four-boson resonance

Still same potential, look at four bosons...

Summary and outlook

- ✓ method established for up to four particles
- \checkmark handle large N_{DVR} for three-body systems (current record: 32)
- ✓ efficient symmetrization and antisymmetrization
- ✓ projection onto cubic irreps. $(H \to H + \lambda(1 P_{\Gamma}), \lambda \text{ large})$

Summary and outlook

✓ method established for up to four particles ✓ handle large N_{DVR} for three-body systems (current record: 32) ✓ efficient symmetrization and antisymmetrization ✓ projection onto cubic irreps. $(H \rightarrow H + \lambda(1 - P_{\Gamma}), \lambda \text{ large})$

Work in progress

- chiral interactions (non-diagonal due to spin dependence!)
 - application to few-neutron systems
 - further optimization (especially for spin-dep. potentials)

 → need to reach decent N_{DVR} for four-neutron calculation!
 - isospin degrees of freedom ~ treat general nuclear systems
 - different boundary conditions (e.g., antiperiodic)

Electroweak currents from chiral EFT in few-nucleon systems

R. Seutin, SK, K. Hebeler, A. Schwenk et al., work in progress

Chiral EFT currents

Chiral EFT predicts consistent electroweak 1+2-body currents

Gamow-Teller beta decay of ¹⁰⁰Sn Gysbers, Hagen et al.

contributions from 2-body currents are key!

Chiral EFT currents

developing framework to include 1+2-body currents at finite q in partial-wave basis, momentum basis, HO matrix elements

magnetic form factor benchmarks with literature not perfect

2-body current tests ongoing, especially for cm-dependent part pw basis vs. mom basis check

Probing next-generation nuclear forces in medium-mass nuclei

J. Hoppe, J. Simonis, K. Hebeler, A. Schwenk et al., work in progress

Shell-model interactions from chiral EFT: L. Huth, V. Durant, J. Simonis, A. Schwenk, arXiv:1804.04990

Nuclear forces and nuclear matter

Monte-Carlo calculation of all energy diagrams up to 4th order in MBPT

Drischler, Hebeler, AS, arXiv:1710.08220

including NN, 3N, 4N 3N fit to saturation region

systematic improvement from N²LO to N³LO

first full N³LO Hamiltonians for use in nuclear structure!

First (preliminary) N³LO results for nuclei

Chiral shell model interactions

use chiral EFT interactions as basis and fit in sd shell directly Huth, Durant et al., arXiv:1804.04990

includes new valence-space (vs) operators

all LECs turn out natural

Thank you!

Backup slides

Chiral shell model interactions

use chiral EFT interactions as basis and fit in sd shell directly Huth, Durant et al., arXiv:1804.04990

includes new valence-space (vs) operators

all LECs turn out natural

explore dripline in $sdf_{7/2}$ space Huth et al., in prep.

Tetraneutron evidence

Physics About BROWSE PRESS COLLECTIONS

Viewpoint: Can Four Neutrons Tango?

Nigel Orr, Laboratoire de Physique Corpusculaire de Caen, ENSICAEN, IN2P3/CNRS et Université de Caen Normandie, 14050 Caen cedex, France

February 3, 2016 • Physics 9, 14

Evidence that the four-neutron system known as the tetraneutron exists as a resonance has been uncovered in an experiment at the RIKEN Radioactive Ion Beam Factory.

Short (recent) history of tetraneutron states

- **2002:** experimental claim of bound tetraneutron Marques et al., PRC 65 044006
- 2003: several studies indicate unbound four-neutron system

Bertulani et al.. JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90 252501

Output State St

Short (recent) history of tetraneutron states

- **2002:** experimental claim of bound tetraneutron Marques et al., PRC 65 044006
- 2003: several studies indicate unbound four-neutron system
 - Bertulani et al.. JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90 252501
- Output State St
- **2016:** RIKEN experiment: possible tetraneutron resonance $E_R = (0.83 \pm 0.65_{\text{stat.}} \pm 1.25_{\text{syst.}}) \text{ MeV}, \Gamma \lesssim 2.6 \text{ MeV}$ Kisamori et al., PRL 116 052501
- 6 following this: several new theoretical investigations
 - complex scaling \rightarrow need unphys. T = 3/2 3N force or strong rescaling

Hiyama et al., PRC 93 044004 (2016); Deltuva, PLB 782 238 (2018)

incompatible predictions:

Short (recent) history of tetraneutron states

- **Q 2002:** experimental claim of bound tetraneutron Marques et al., PRC 65 044006
- 2003: several studies indicate unbound four-neutron system
 - Bertulani et al.. JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90 252501
- Observable tetraneutron resonance excluded Lazauskas PRC 72 034003
- **2016:** RIKEN experiment: possible tetraneutron resonance $E_R = (0.83 \pm 0.65_{\text{stat.}} \pm 1.25_{\text{syst.}}) \text{ MeV}, \Gamma \lesssim 2.6 \text{ MeV}$ Kisamori et al., PRL 116 052501
- 6 following this: several new theoretical investigations
 - complex scaling \rightarrow need unphys. T = 3/2 3N force or strong rescaling

Hiyama et al., PRC 93 044004 (2016); Deltuva, PLB 782 238 (2018)

indications for three-neutron resonance...
 ...lower in energy than tetraneutron state
 Gandolfi et al., PRL 118 232501 (2017)

DVR construction

• start with some initial basis; here: $\phi_i(x) = \frac{1}{\sqrt{L}} \exp\left(i\frac{2\pi i}{L}x\right)$

• consider (x_k, w_k) such that $\sum_{k=-N/2}^{N/2-1} w_k \, \phi_i^*(x_k) \phi_j(x_k) = \delta_{ij}$

DVR states

• $\psi_k(x)$ localized at x_k , $\psi_k(x_j) = \delta_{kj}/\sqrt{w_k}$

• **note:** momentum mode $\phi_i \leftrightarrow$ spatial mode ψ_k

DVR features

potential energy is diagonal!

$$\begin{split} \langle \psi_k | V | \psi_l \rangle &= \int \mathrm{d}x \, \psi_k(x) \, V(x) \, \psi_l(x) \\ &\approx \sum_{n=-N/2}^{N/2-1} w_n \, \psi_k(x_n) \, V(x_n) \, \psi_l(x_n) = V(x_k) \delta_{kl} \end{split}$$

- no need to evaluate integrals
- $\bullet\,$ number N of DVR states controls quadrature approximation

DVR features

potential energy is diagonal!

$$\begin{split} \psi_k |V|\psi_l\rangle &= \int \mathrm{d}x \,\psi_k(x) \,V(x) \,\psi_l(x) \\ &\approx \sum_{n=-N/2}^{N/2-1} w_n \,\psi_k(x_n) \,V(x_n) \,\psi_l(x_n) = V(x_k) \delta_k \end{split}$$

- no need to evaluate integrals
- $\bullet\,$ number N of DVR states controls quadrature approximation
- ② kinetic energy is simple (via FFT) or sparse (in d > 1)!
 - plane waves ϕ_i are momentum eigenstates $\rightsquigarrow \hat{T} \ket{\psi_k} \sim \mathcal{F}^{-1} \otimes \hat{p}^2 \otimes \mathcal{F} \ket{\psi_k}$
 - $\langle \psi_k | \hat{T} | \psi_l \rangle =$ known in closed form

 \hookrightarrow replicated for each coordinate, with Kronecker deltas for the rest

General DVR basis states

- construct DVR basis in simple relative coordinates...
- ... because Jacobi coord. would complicate the boundary conditions
- ullet separate center-of-mass energy (choose $\mathbf{P}=\mathbf{0})$
- mixed derivatives in kinetic energy operator

(Anti-)symmetrization and parity

Permutation symmetry

- for each $|s\rangle \in B$, construct $|s\rangle_{\mathcal{A}} = \mathcal{N} \sum_{p \in S_n} \operatorname{sgn}(p) D_n(p) |s\rangle$
- then $|s
 angle_{\mathcal{A}}$ is antisymmetric: $\mathcal{A} \, |s
 angle_{\mathcal{A}} = |s
 angle_{\mathcal{A}}$
- \bullet for bosons, leave out $\mathrm{sgn}(p) \rightsquigarrow$ symmetric state
- $D_n(p) \left| s \right\rangle = \text{ some other } \left| s' \right\rangle \in B \text{modulo PBC}$

(Anti-)symmetrization and parity

Permutation symmetry

- for each $|s\rangle \in B$, construct $|s\rangle_{\mathcal{A}} = \mathcal{N} \sum_{p \in S_n} \operatorname{sgn}(p) D_n(p) |s\rangle$
- then $|s
 angle_{\mathcal{A}}$ is antisymmetric: $\mathcal{A}\,|s
 angle_{\mathcal{A}}=|s
 angle_{\mathcal{A}}$
- \bullet for bosons, leave out $\mathrm{sgn}(p) \rightsquigarrow$ symmetric state
- $D_n(p) |s\rangle = \text{ some other } |s'\rangle \in B \text{modulo PBC}$

This operation partitions the orginal basis, *i.e.*, each state appears in at most one (anti-)symmetric combination.

- efficient reduction to (anti-)symmetrized orthonormal basis
 - \hookrightarrow no need for numerically expensive diagonalization!
- $B \rightarrow B_{\text{reduced}}$, significantly smaller: $N \rightarrow N_{\text{reduced}} \approx N/n!$

Note: parity (with projector $\mathcal{P}_{\pm} = 1 \pm \mathcal{P}$) can be handled analogously.

DVR basis size
$$N = N_{spin} (\times N_{isospin}) \times N_{DVR}^{n_{dim} \times (n_{body} - 1)}$$

- $N_{\rm spin} = (2S+1)^{n_{\rm body}}$, $N_{\rm isospin} = 1$ for neutrons only
- $3n: 8 \times N_{\text{DVR}}^6$, $4n: 16 \times N_{\text{DVR}}^9 \rightsquigarrow$ large-scale calculation

DVR basis size
$$N = N_{\text{spin}} (\times N_{\text{isospin}}) \times N_{\text{DVR}}^{n_{\text{dim}} \times (n_{\text{body}} - 1)}$$

- $N_{\rm spin} = (2S+1)^{n_{\rm body}}, \; N_{\rm isospin} = 1$ for neutrons only
- $3n: 8 \times N_{\text{DVR}}^6$, $4n: 16 \times N_{\text{DVR}}^9 \rightsquigarrow$ large-scale calculation
- diagonalization via distributed Lanczos algorithm (PARPACK)
 ~> large matrix-vector products
- kinetic part (via FFT) in original basis (before reduction)

(note: kinetic matrix diagonal in spin-configurations space)

DVR basis size
$$N = N_{\text{spin}} (\times N_{\text{isospin}}) \times N_{\text{DVR}}^{n_{\text{dim}} \times (n_{\text{body}} - 1)}$$

- $N_{\rm spin} = (2S+1)^{n_{\rm body}}, \, N_{\rm isospin} = 1$ for neutrons only
- $3n: 8 \times N_{\text{DVR}}^6$, $4n: 16 \times N_{\text{DVR}}^9 \rightsquigarrow$ large-scale calculation
- diagonalization via distributed Lanczos algorithm (PARPACK)
 ~> large matrix-vector products
- kinetic part (via FFT) in original basis (before reduction)

(note: kinetic matrix diagonal in spin-configurations space)

DVR basis size
$$N = N_{\text{spin}} (\times N_{\text{isospin}}) \times N_{\text{DVR}}^{n_{\text{dim}} \times (n_{\text{body}} - 1)}$$

- $N_{\rm spin} = (2S+1)^{n_{\rm body}}, \, N_{\rm isospin} = 1$ for neutrons only
- $3n: 8 \times N_{\text{DVR}}^6$, $4n: 16 \times N_{\text{DVR}}^9 \rightsquigarrow$ large-scale calculation
- diagonalization via distributed Lanczos algorithm (PARPACK)
 ~> large matrix-vector products
- kinetic part (via FFT) in original basis (before reduction)

(note: kinetic matrix diagonal in spin-configurations space)

• potential part still diagonal in symmetry-reduced basis

Broken symmetry

The finite volume breaks the symmetry of the system:

Irreducible representations of SO(3) are reducible with respect to O!

- finite subgroup of SO(3)
- number of elements = 24
- five irreducible representations

Cubic projection

• $D_n(R)$ realizes a cubic rotation R on the n-body DVR basis

- ~> permutation/inversion of relative coordinate components
- indices are wrappen back into range $-N/2,\ldots,N/2-1$

Cubic projection

• $D_n(R)$ realizes a cubic rotation R on the n-body DVR basis

- ~> permutation/inversion of relative coordinate components
- indices are wrappen back into range $-N/2,\ldots,N/2-1$

numerical implementation: $\hat{H} \rightarrow \hat{H} + \lambda (\mathbf{1} - \mathcal{P}_{\Gamma})$, $\lambda \gg E$

$$V(r) = V_0 \exp \left(- \left(\frac{r-a}{R_0} \right)^2 \right)$$

 \hookrightarrow use barrier to produce S-wave resonance

$$V(r) = V_0 \exp\left(-\left(\frac{r-a}{R_0}\right)^2\right)$$

 \hookrightarrow use barrier to produce S-wave resonance

$$V(r) = V_0 \exp \left(- \left(\frac{r-a}{R_0} \right)^2 \right)$$

 \hookrightarrow use barrier to produce S-wave resonance

$$V(r) = V_0 \exp\left(-\left(\frac{r-a}{R_0}\right)^2\right)$$

 \hookrightarrow use barrier to produce S-wave resonance

finite-volume spectra

Im E

Ĥ

0

Three fermions

Consider same shifted Gaussian potential for three fermions...

- add spin d.o.f., but no spin dependence in potential
- \rightsquigarrow total spin S good quantum number (fix S_z to determine)
- also: can still consider simple cubic irreps.

• all lowest states found to be in T_1^- irrep. (~ P-wave state)

- some remaining volume dependence (box not very large)
- extracted S = 1/2 resonance energy: $E_R = 5.7(2)$