Study of EM Properties along the Carbon Isotopic Chain & O-21

A Status Report From A03

M. Mathy¹, Sebastian Heil¹, Juan Saiz², Ina Syndikus¹ and M. Petri^{2,1}

¹Institut für Kernphysik, TU Darmstadt, Germany; ²Department of Physics, University of York, United Kingdom

5. July 2018 | TU Darmstadt | Institut für Kernphysik | AG Petri/Aumann | Michael Mathy | 1

DFG

A STREET, STREE

SFB

Outline

A03 Studies EM properties of:

Oxygen-21

Oxygen-21: Motivation

Theoretical shell model predictions for low lying excited states differ significantly:

	BR [%]		Lifetime [ps]	
Transition	$USDB^*$	$NN+3N^{**}$	$USDB^*$	$NN+3N^{**}$
$\frac{1}{2}^+ \rightarrow \frac{5}{2}^+$			178	709
$\frac{3}{2}^+ \rightarrow \frac{5}{2}^+$	80	87	2.7	1.9
$\frac{3}{2}^+ \rightarrow \frac{1}{2}^+$	20	13		

(** A. Schwenk et al., Private Communication) (* B. Alex Brown et al., MSU, Private Communication)

Oxygen-21: Experimental Setup

Measured lifetime of 1/2⁺ in ²¹O at NSCL:

Oxygen-21: Updated Results for 1/2+

• Latest results with improved background description:

Oxygen-21: Updated Results for 1/2⁺

• Latest results with improved background description:

Oxygen-21: Updated Results for 1/2+

• Latest results with improved background description:

• Ph.D. thesis and paper about this topic will be finished soon by S. Heil.

Oxygen-21: Updated Results for 1/2⁺

• Latest theoretical calculations from A04:

Carbon-16

• EM observables in ¹⁶C are strongly sensitive to the details of the nuclear Hamiltonian.

• Used GAMMASPHERE and μ -Ball at Argonne National Lab to measure:

The lifetimes of the 2_2^+ , 3^+ and 4^+ states.

- Use fusion-evaporation to produced ¹⁶C: ⁹Be(⁹Be,2p)¹⁶C*
- Gate on 2p with particle detector μ-Ball and detect the emitted γ-rays in coincidence with GAMMASPHERE.
- Expected lifetimes with τ_{cm} < 4 ps are rather short.

- Use fusion-evaporation to produced ¹⁶C: ⁹Be(⁹Be,2p)¹⁶C*
- Gate on 2p with particle detector μ-Ball and detect the emitted γ-rays in coincidence with GAMMASPHERE.
- Expected lifetimes with $\tau_{\rm cm}$ < 4 ps are rather short.
- Measure τ in-fight with the Doppler-shift-attenuation method:

• Shorter $\tau \to \text{Larger mean decay } \beta \to \text{Stronger energy shift due to Doppler effect.}$

Energy shift for different radiation angle $\theta \rightarrow \tau$

- Origin of ²²Ne: Target was oxidized: ${}^{9}Be + {}^{16}O \rightarrow {}^{22}Ne + 2p + n$
- Slope is sensitive to lifetime \rightarrow Compare with Geant4 simulations.

Carbon-16: Latest Progress

Simulation:

• Improved Geant4 simulations: Realistic resolutions and improved stopping powers.

Experiment: Can we find the 2^{+}_{2} ?

• Improved event building in sorting algorithms

 \rightarrow Increased statistics for ¹⁶C 2⁺₁ events by 6%

- Low μ-Ball eff. for protons is major issue for insufficient statistics AND the 2₂⁺ mostly feeds into the 2₁⁺
 - \rightarrow Don't gate on 2 protons

 \rightarrow Gate on 1 proton and in addition gate on the gamma energy of the 2⁺₁ state

Carbon-16: Latest Progress

Detector Angle vs. Uncorrected Energy for 1p Cut and Gate on 2,⁺ State:

1p cut analysis done for the LT of Ne-22 **4**⁺: Deviation from literature value **1**% to **1**4%

Carbon-16: Time-Line

SFB Milestones for the ¹⁶C Experiment:

2016

• Run ¹⁶C experiment at ANL

2017

2018

- Analysis of ¹⁶C experiment at ANL is completed
- Results of ¹⁶C experiment at ANL are published

2019

→ On track

Carbon-12

Carbon-12: Motivation

- Carbon-12 is a prime nucleus for many ab initio calculations.
- Exp. Q(2⁺) uncertainties are larger than theory's.

Carbon-12: The Experiment at JYFL

• Measure scattered C-12 at backward angles with position sensitive silicon detectors.

Carbon-12: The Experiment at JYFL

- Measure scattered C-12 at backward angles with position sensitive silicon detectors.
- Measure relative to Pb-208 3⁻₁ state @ 2614 keV: Precision of B(E3) ~1.5%!
- Use $^{\rm nat}{\rm Zn(p,xn)}^{66}{\rm Ga}$ for high gamma energy calibration.

Realistic Goals:

Without new B(E2) measurement:<29% uncertainty in the Q(2+)</th>With new B(E2) measurement:<18% uncertainty in the Q(2+)</td>

Carbon-12: First Results

- Detectors are calibrated and a proper coincidence is established.
- Cleaned (Gate on SiCD rings energy) and Doppler corrected gamma-ray spectra:

• Next Step: Feed these experimental results and settings as input into GOSIA to extract a proper Q(2⁺).

5. July 2018 | TU Darmstadt | Institut für Kernphysik | AG Petri/Aumann | Michael Mathy | 23

Carbon-12: Time-Line

SFB Milestones for the ¹²C Experiments:

2016

- Design and construction of the target chamber
- Setup chamber & detectors at JYFL
- Run Coulomb excitation experiment at JYFL

2017

2018

- Analysis of ¹²C Coulomb excitation experiment is completed \rightarrow On track
- Run ¹²C NRF Experiment at S-DALINAC

2019

- Analysis of ¹²C(e,e') data is finished
- ¹²C Coulomb excitation and ¹²C(e,e') data are combined \rightarrow Possibly at the end of 2019

 \rightarrow Done at the end of 2016

 \rightarrow Changed to ¹²C(e,e') in mid of 2018

 \rightarrow Possibly at the end of 2019

- \rightarrow Done in Spring 2017
- \rightarrow Done in Spring 2017

Carbon-14

Perform (e,e') on ¹⁴C to extract form factors and transition strengths to low-lying excited states @ S-DALINAC:

- Many excited states are not described well by theory.
- Challenging to theory due to cluster states.
- ~77mg/cm² radioactive ¹⁴C target enabling (e,e') for the first time in 4 decades.
- Measure the strengths for many states with improved precision or for the first time.

Challenges:

- Need a fast valve system for sudden vacuum failure.
- Fast piezo pressure sensors at top of the QCLAM to trigger valves.
- Designed a new scatteringchamber for QCLAM, which allows to place additional fast valves.

Carbon-14: Latest Progress

- Lot afford was put in the modernization and recommissioning of the QCLAM vacuum system.
- Scattering-chamber is built now and ready soon.
- All vacuum parts and sensors are at the institute and ٠ ready.
- Successfully installed an additional vacuum port at a crucial spot @QCLAM.
- The target seems to be activated at its surface \rightarrow A new target-chamber/ladder with sewer port is necessary.
- Experiment scheduled for the beginning of 2019.

Carbon-14: Time-Line

SFB Milestones for the ¹⁴C Experiment:

2016

Design scattering-chamber in the first half of 2016 \rightarrow Done in the beginning 2017 \checkmark ٠

2017

Scattering-chamber completed and tested

2018

• Run of ¹⁴C(e,e') experiment at QCLAM

2019

- Analysis of ¹⁴C(e,e') data is finished
- Results of ¹⁴C(e,e') data are published •

 \rightarrow Done mid 2018 \checkmark

- \rightarrow Scheduled for Spring 2019
- \rightarrow Possibly at the end of 2019
- \rightarrow Possibly at the end of 2019

Thank you for your attention!

5. July 2018 | TU Darmstadt | Institut für Kernphysik | AG Petri/Aumann | Michael Mathy | 30

Appendix: Carbon-16

 Electromagnetic observables in ¹⁶C are strongly sensitive to the details of the nuclear Hamiltonian.

 Large changes in lifetimes and branching ratios if Hamiltonian uses NN or NN+3N interactions.

(C. Forssén, J. Phys. G: Nucl. Part. Phys. 40, 055105 (2013) & M. Petri et al., Phys. Rev. C 86 044329 (2012))

- Also strongly pronounced changes in transition strengths / lifetimes for different theoretical models!
- E.g.: For the transition strength $B(2^+_2 \rightarrow 0^+)$ in ¹⁶C one founds:

$$7 \cdot B_{\text{NN}+3\text{NN}}(2_2^+ \to 0^+) \approx B_{\text{NN}}(2_2^+ \to 0^+)$$
$$20 \cdot B_{\text{NN}+3\text{NN}}(2_2^+ \to 0^+) \approx B_{\text{CD-Bonn MesonEx.}}(2_2^+ \to 0^+)$$

(C. Forssén, et al., J. Phys. G: Nucl. Part. Phys. 40, 055105 (2013))

- Re-calibrated all GS detectors using 15 different energies from 245 keV to 6129 keV Sources: Y-88 / O-16 / Eu152 / Co56
 - → Result: > 23 detectors were not active during the experiment.
 - > 3 detectors have a strange response.
 - > 84 detectors can be used \rightarrow Access to 16 rings.
- For the first analysis (shown last year) the reached statistics were not satisfying:
 - → Redone µ-Ball 2D proton cuts (for every run file!) and coincidence window.
 - → Result: 30% more counts in C-16 2⁺₁ state than before!
- Unfortunately the statistics is much lower than we aimed for! Reasons:
 - → Reached beam intensity is 28% of aim intensity.
 - → 2p efficiency of µ-Ball 36% of supposed efficiency
 - Only ~10% of the statistic we aimed for!

GAMMASPHERE:

- 110 Compton suppressed HPGe detectors. •
- ~4 π ball.

12 at 36.0

Covered angles θ : 17° to 163° with **16 rings**.

 μ -Ball:

- ~4 π ball.

96 Csl scintillator detectors.

(D.G. Sarantites et al., Nucl. Instrum. Meth. A **381** (1996))

Total Uncorrected γ - Spectrum with 2p Cuts:

Beta Scan for Target+Degrader Run:

5. July 2018 | TU Darmstadt | Institut für Kernphysik | AG Petri/Aumann | Michael Mathy | 36

Test realistic Geant4 Simulation with Ne-22 4⁺:

Appendix: Carbon-16

3) Extract experimental mean decay beta:

0.028

$$\overline{\beta}_{\mathrm{Exp}} = 0.0234(3)$$

4) Calculate the lifetime for ²²Ne 4⁺₁ using the results from 3) and 2).

2) In Geant4: Generate excited Ne-22 isotope in a thin oxidation layer using the beta distribution from 1).

1) Extract initial beta distribution of Ne-22 mentioned

Do this for several lifetimes & extract mean decay

Movement of E_{Lab} for the experimental data for Ne-22 4+:

Movement of E_{Lab} for the simulation for Ne-22 4⁺:

Create a realistic Geant4 Simulation: Stopping Power!

- **Problem:** Geant4 is optimized for high energy physics → Is the used stopping power accurate enough?
- Solution: Import stopping power from SRIM.

Create a realistic Geant4 Simulation: How define incoming particles?

- **Problem 1:** Initial beta distribution of C-16 is important but difficult to implement.
 - We know nothing about the energy distribution for the 2 protons!
- Problem 2: The simulation has to be as close to the experiment as possible.
 - **Bias in experiment:** Both protons have to be measured!
 - Protons can stuck in target and degrader!

- μ -Ball efficiencies varies from detector to detector!

arXiv:1709.07501v1 [nucl-ex] 21 Sep 2017 Reorientation-effect measurement of the first 2^+ state in ${}^{12}C$: confirmation of oblate deformation

Downsides of this Latest Q(2+) Measurement:

- 1) Measured C.S. relative to ¹⁹⁴Pt \rightarrow Gamma-ray energy a few keV! \rightarrow Large influence by changes in beam energy.
- 2) No sufficient gamma-ray efficiency calibration at 4 MeV.
- 3) Measured only under forward angles \rightarrow No sensitivity for Q(2⁺).

Result: $Q_s(2^+) = (+0.053 \pm 0.044)$ eb 83% uncertainty

Carbon-12: The Experiment at JYFL

Important: Efficiency Calibration of Jurogamll

• Low energy range (E<2 MeV) with "standard" sources:

Co-60, Eu-152, Ba-133

• Special: High energy range (E=0.8 to 5 MeV) using $^{nat}Zn(p,xn)^{66}Ga$

	E_{γ} (keV) Helmer [16]	I_{γ} (rel.) Recommended
natZn, 0.25 mm p@ 11 MeV, 1 enA 2h beam on target	833.5324 (21) 1039.220 (3) 1333.112 (5) 1418.754 (5) 1508.158 (7) 1898.823 (8) 1918.329 (5) 2189.616 (6) 2422.525 (7) 2751.835 (5) 3228.800 (6) 3380.850 (6) 3422.040 (8) 3791.036 (8) ^c 4085.853 (9) 4295.224 (10) ^c 4461.202 (9) 4806.007 (9)	$\begin{array}{c} 15.93 \ (5) \\ 100.0 \ (3) \\ 3.175 \ (12) \\ 1.657 \ (8) \\ 1.497 \ (7) \\ 1.051 \ (8) \\ 5.368 \ (21) \\ 14.42 \ (5) \\ 5.085 \ (22) \\ 61.35 \ (23) \\ 4.082 \ (19) \\ 3.960 \ (19) \\ 2.314 \ (14) \\ 2.941 \ (19) \\ 3.445 \ (18) \\ 10.30 \ (8)^g \\ 2.26 \ (3) \\ 5.03 \ (3) \end{array}$

• Cleaning the gamma-ray spectra using the ring energy of the SiCD: Example for ${}^{208}Pb 3^{-} \rightarrow 0^{+}$:

Figure 9: Doppler corrected Jurogam-II energy (keV) vs. ring energy in the SiCD (MeV) (left). Projection of the Jurogam-II energy interval 2595 to 2630 keV along the x-axis (right)