

Nucleosynthesis in core-collapse supernovae

Pls: Almudena Arcones and Gabriel Martinez-Pinedo Doctoral researches: Julia Bliss, Carlos Mattes, Andre Sieverding, Stylianos Nikas, <u>Hannah Yasin</u>

Highlights

Supernova simulations:

- Comparison of neutrino transports (submitted, arxiv:1806.10030)
- Equation of state: synergies with B01 and B05 (in prep.)
- Long-time evolution: under development

Nucleosynthesis:

- Neutrino nucleosynthesis (submitted, *arxiv:1805.10231*)
- Neutrino-driven ejecta: impact of (α,n) reactions (*J. Phys. G, 2017,* in prep.) astrophysical uncertainties (*ApJ, 2018*)
- Mo & Ru: implications for presolar grains (submitted, arxiv:1804.03947)

July 5th, 2018 | SFB 1245 workshop 2018 | Project B06 | Hannah Yasin |

Eth. 0010 | OED 1045 weekshare 0010 | Duringt D00 | Harmach Veria

Supernova simulations:

Highlights

- Comparison of neutrino transports (submitted, arxiv:1806.10030)
- Equation of state: synergies with B01 and B05 (in prep.)
- Long-time evolution: under development

Nucleosynthesis:

- Neutrino nucleosynthesis (submitted, *arxiv:1805.10231*)
- Neutrino-driven ejecta: impact of (α,n) reactions (*J. Phys. G, 2017,* in prep.) astrophysical uncertainties (*ApJ, 2018*)
 Internship

2

• Mo & Ru: implications for presolar grains (submitted, arxiv:1804.03947)

Theory

Internship

July 5th, 2018 | SFB 1245 workshop 2018 | Project B06 | Hannah Yasin |

З

K. C. Pan, C. Mattes, E. O'Connor, S. Couch A. Perego, A. Arcones

JINA-CEE

SFB 1245

different transport schemes:

Neutrino transport comparison, 1D

- M1 (O'Connor & Couch 2018)
- IDSA (Pan et al. 2016)

160

• ASL (PhD Carlos Mattes; Pan, Mattes, et al., submitted arxiv:1806.10030)

2.0

Controlled comparison: same simulation code (FLASH) and set up Fryxell et al, 2000 different transport schemes:

- M1 (O'Connor & Couch 2018)
- IDSA (Pan et al. 2016)
- ASL (PhD Carlos Mattes; Pan, Mattes, et al., submitted arxiv:1806.10030)

July 5th, 2018 | SFB 1245 workshop 2018 | Project B06 | Hannah Yasin |

4

X

SFB 1245

JINA-CEE

5

SFB_1245

Eos in supernova simulations

SFB 1245

Lattimer & Swesty (1991)	H. Shen et. al. (1998)
Liquid-drop model	Relativistic mean field approach
K = 180, 220 or 375	K = 281
m* / m = 1	m* / m = 0.634

EOS transition

→ JINA-CEE

Goal: Run long-time CCSN simulations

Challenges: EOS tables have limits!

- High-density EOS implement binding energies in their internal energy, low-density EOS don't
- It's not feasible to recalculate this binding energy for every EOS

We chose to:

 Make a numerical transition, for every available EOS, all available progenitors

2d: LS220 + Helmholtz with ASL, 20 M_{\odot} , hf = 1.0

TECHNISCHE

UNIVERSITÄT DARMSTADT

8

2d: LS220 + Helmholtz with ASL, 20 M_{\odot} , hf = 1.0

SFB 1245

July 5th, 2018 | SFB 1245 workshop 2018 | Project B06 | Hannah Yasin |

Effective mass m*

SFB

Skyrme-type effective mass for a nucleon with isospin t:

$$\frac{\hbar^2}{2m_t^*} = \frac{\hbar^2}{2m} + \lambda_1 n_t + \lambda_2 n_{-t}$$
 Lattimer & Swesty, 1991

Label	m/ _{m*} PNM, n ₀	m/ _{m*} SM, n ₀	$\lambda_1 \left[{}^{10^{-3}} \frac{{\rm fm}^3}{{\rm MeV}} \right]$	$\lambda_2 \left[{}^{10^{-3}} \frac{\mathrm{fm}^3}{\mathrm{MeV}} \right]$
m* _{1.0} (LS)	1	1	0	0
m* _{0.8}	0.8	0.8	0.831	0.831
m* _{0.634} (Shen)	0.634	0.634	1.920	1.920

 $P \sim 1/m$, we expect m* with m* / m < 1 to decrease the central density

H. Yasin, S. Schäfer, A. Arcones, A. Schwenk: strong synergy B06, B01, B05

Impact on proto-neutron star and shock

SFB 1245

- Proto-neutron star (PNS) radius increases for m^* / m < 1
- $\bullet\ m^*_{0.634}$ reproduces the PNS radius obtained with original Shen EOS
- Explosion evolution strongly affected

10

 15 M_{\odot} , hf = 1.24, GR1D

July 5th, 2018 | SFB 1245 workshop 2018 | Project B06 | Hannah Yasin |

Mass-radius relationship

SFB 1

- Solve Tolman-Oppenheimer-Volkoff equations at T = 0
- m* / m < 1 lead to higher maximum mass and larger radii (pressure)
- $2M_{\odot}$ constraint fulfilled Antoniadis et al, 2015
- Chiral EFT provides an uncertainty band for the radii of NS Hebeler et al, 2013

Highlights

Supernova simulations:

- Comparison of neutrino transports (submitted, arxiv:1806.10030)
- Equation of state: synergies with B01 and B05 (in prep.)
- Long-time evolution: under development

Nucleosynthesis:

- Neutrino nucleosynthesis (submitted, *arxiv:1805.10231*)
- Neutrino-driven ejecta: impact of (α,n) reactions (*J. Phys. G, 2017,* in prep.) astrophysical uncertainties (*ApJ, 2018*)
- Mo & Ru: implications for presolar grains (submitted, arxiv:1804.03947)

Neutrino nucleosynthesis

SFB 1245

- Neutrinos are crucial for supernova explosions and have a direct impact on the nucleosynthesis in the v process
- Emission of 10⁵⁸ neutrinos from the collapsing core
- $\langle E_v \rangle \approx 8 20 \text{ MeV}$
- Inverse β-decay
- Particle evaporation
- Capture of spallation products
- Significant production of e.g. ¹¹B

New cross section compilation

- Based on RPA from dripline to dripline up to Z=84
- Additionally derived from experimental data and shell model calculations:
 - ²²Ne + $v_e \rightarrow$ ²²Na (mirror nucleus data)
 - ${}^{26}Mg + v_e \rightarrow {}^{26}AI$ (charge exchange data)
 - ${}^{36}\text{Ar} + \overline{\nu}_e \rightarrow {}^{36}\text{Cl} \text{ (Shell model)}$
 - ${}^{36}\text{S} + v_e \rightarrow {}^{36}\text{CI}$ (Shell model)
- From the literature:
 - ¹³⁸Ba + $v_e \rightarrow$ ¹³⁸La Byelikov et al. (2007)
 - ¹⁸⁰Hf + $v_e \rightarrow$ ¹⁸⁰Ta
 - ⁴He spallation *Gazit et al. (2007)*
 - •

Complete nucleosynthesis study with 1D parametric explosion models (13 - 30 M_{\odot}) and updated neutrino properties *arXiv:1805.10231*

Self-consistent simulations

- Innermost supernova ejecta are affected by the details of the explosion
- Nucleosynthesis with tracer particles from a 2D axisymmetric simulation from the ORNL group (Bruenn et. al, 2016) (LS220 + 12 M_☉)
- Tracer data until 1.6 seconds
- Production of light elements in the a-rich freeze out

The v process in multi-D

For this case:

- Production of light elements in the innermost ejecta is negligible
- Qualitative agreement with 1D calculations
- Longer evolution time and other progenitor models are now being studied

2007)

Production factor

0.28

0.98

Nucleus

71 i

 ^{11}B

15N

 $^{19}\mathsf{F}$

¹³⁸La

¹⁸⁰Ta^{*m*}

Survey of astrophysical conditions in v-driven supernova ejecta

J. Bliss, M. Witt, A. Arcones, F. Montes, and J. Pereira, ApJ. 855 (2018) 135

- Systematic study of nucleosynthesis conditions based on steady-state models
- Identification of four characteristic abundance patterns:
 - * NSE1 & NSE2 \rightarrow binding energies and partition functions
 - * CPR1 \rightarrow Q-values of (α ,n) reactions
 - * CPR2 \rightarrow individual reactions are critical

Reactions in v-driven supernova ejecta

SFB 1

Important reactions: α-, n-, p-

capture reactions, β -decays

- $\tau_{expansion} \ll \tau_{\beta} \rightarrow (\alpha, n)$ are key reactions
- Q-process (Hoffman & Woosley 1992)
- Absence of relevant experiments
- \rightarrow theoretical reaction rates based

on Hauser-Feshbach model

time : 9.936e-03 s, T : 4.193e+00 GK, ρ : 2.481e+05 g/cm³

Sensitivity study of (a,n) reactions in neutrinodriven supernova ejecta

TECHNISCHE UNIVERSITÄT DARMSTADT

SFB 1

- Independently vary each (a,n) rate between Fe and Rh by a random factor
- Identification of key reactions → large correlation and abundance change
- ⁸²Ge, ^{84,85}Se, ⁸⁵Br(α,n) strongly affect abundance of Z=36–39
- Measurement of important (α,n) reactions will reduce nuclear physics uncertainties:
 → ⁷⁵Ga(α,n) and ⁸⁵Br(α,n) at ReA3
 - → need more experiments

 10^{-2}

Highlights

Supernova simulations:

- Comparison of neutrino transports (submitted, arxiv:1806.10030)
- Equation of state: synergies with B01 and B05 (in prep.)
- Long-time evolution: under development

Nucleosynthesis:

- Neutrino nucleosynthesis (submitted, arxiv:1805.10231)
- Neutrino-driven ejecta: impact of (α,n) reactions (J. Phys. G, 2017, in prep.) astrophysical uncertainties (ApJ, 2018)
- Mo & Ru: implications for presolar grains (submitted, arxiv:1804.03947)

