Project B04: Dipole Response in Tin and Neodymium Isotope Chains*

TECHNISCHE UNIVERSITÄT DARMSTADT

Sergej Bassauer, Peter von Neumann-Cosel, Atsushi Tamii and the E422 collaboration Institut für Kernphysik, TU Darmstadt

6 July 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2018 | Project B04 | Sergej Bassauer | 1

Motivation and project goals

- Motivation and project goals
- ► Tin isotope chain

- Motivation and project goals
- Tin isotope chain
- Neodymium isotope chain

- Motivation and project goals
- Tin isotope chain
- Neodymium isotope chain
- ► K-splitting in ¹⁵⁴Sm

- Motivation and project goals
- Tin isotope chain
- Neodymium isotope chain
- ▶ K-splitting in ¹⁵⁴Sm
- Summary and outlook

Electric dipole strength and polarisability

6 July 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2018 | Project B04 | Sergej Bassauer | 3

Electric dipole strength and polarisability

Neutron skin and symmetry energy

Electric dipole strength and polarisability

Neutron skin and symmetry energy

Electric dipole strength and polarisability

Neutron skin and symmetry energy

Electric dipole strength and polarisability

Neutron skin and symmetry energy

Gamma strength function covering PDR and GDR

Test of Brink-Axel hypothesis

Electric dipole strength and polarisability

Neutron skin and symmetry energy

- Test of Brink-Axel hypothesis
- Network reaction calculations in astrophysics

Electric dipole strength and polarisability

Neutron skin and symmetry energy

- Test of Brink-Axel hypothesis
- Network reaction calculations in astrophysics

Electric dipole strength and polarisability

Neutron skin and symmetry energy

- Test of Brink-Axel hypothesis
- Network reaction calculations in astrophysics
- Level densities in the GDR region

Electric dipole strength and polarisability

Neutron skin and symmetry energy

- Test of Brink-Axel hypothesis
- Network reaction calculations in astrophysics
- Level densities in the GDR region
 - Test of level density models over a large energy range

Pygmy Dipole Resonance (PDR)

6 July 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2018 | Project B04 | Sergej Bassauer | 4

Oscillation of neutron skin against core

6 July 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2018 | Project B04 | Sergej Bassauer | 4

Giant Dipole Resonance (GDR)

Oscillation of neutrons against protons

6 July 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2018 | Project B04 | Sergej Bassauer | 4

$$\alpha_{D} = \frac{\hbar c}{2\pi^{2}e^{2}} \sum \frac{\sigma_{abs}(E_{x})}{E_{x}^{2}} = \frac{8\pi}{9} \sum \frac{B(E1)(E_{x})}{E_{x}} \left[\text{fm}^{3}/\text{e}^{2} \right]$$

Static dipole polarisability

$$\alpha_D = \frac{\hbar c}{2\pi^2 e^2} \sum \frac{\sigma_{abs}(E_x)}{E_x^2} = \frac{8\pi}{9} \sum \frac{B(E1)(E_x)}{E_x} \left[\text{fm}^3/\text{e}^2 \right]$$

• α_D is a measure of neutron skin

$$\alpha_D = \frac{\hbar c}{2\pi^2 e^2} \sum \frac{\sigma_{abs}(E_x)}{E_x^2} = \frac{8\pi}{9} \sum \frac{B(E1)(E_x)}{E_x} \left[\text{fm}^3/\text{e}^2 \right]$$

$$\alpha_D = \frac{\hbar c}{2\pi^2 e^2} \sum \frac{\sigma_{abs}(E_x)}{E_x^2} = \frac{8\pi}{9} \sum \frac{B(E1)(E_x)}{E_x} \left[\text{fm}^3/\text{e}^2 \right]$$

- α_D is a measure of neutron skin
 - P.G. Reinhard, W. Nazarewicz, PRC 81 (2010) 051303
- PDR strength related to neutron skin

$$\alpha_D = \frac{\hbar c}{2\pi^2 e^2} \sum \frac{\sigma_{abs}(E_x)}{E_x^2} = \frac{8\pi}{9} \sum \frac{B(E1)(E_x)}{E_x} \left[\text{fm}^3/\text{e}^2 \right]$$

- α_D is a measure of neutron skin
 - P.G. Reinhard, W. Nazarewicz, PRC 81 (2010) 051303
- PDR strength related to neutron skin
 - ► J. Piekarewicz, PRC 73 (2006) 044325

112Sn	113Sn	114Sn	115Sn	116Sn	117Sn	118Sn	119Sn	120Sn	121Sn	122Sn	123\$n	124Sn	132Sn
STABLE	115.09 D	STABLE	27.03 H	STABLE	129.2 D	STABLE	39.7 S						
0.97%	c 100.00%	0.66%	0.34%	14.54%	7.68%	24.22%	8.59%	32.58%	8-: 100.00%	4.63%	8-: 100.00%	5.79%	8-: 100.00%

112Sn	113Sn	114Sn	115Sn	116Sn	117Sn	118Sn	1195n	120Sn	121Sn	122Sn	123Sn	124Sn	132Sn
STABLE	115.09 D	STABLE	27.03 H	STABLE	129.2 D	STABLE	39.7 S						
0.97%	e: 100.00%	0.66%	0.34%	14.54%	7.68%	24.22%	8.59%	32.58%	β-: 100.00%	4.63%	β-: 100.00%	5.79%	β-: 100.00%

Wide mass range with little change of the underlying structure

112Sn	113Sn	114Sn	115Sn	116Sn	117Sn	118Sn	119Sn	120Sn	121Sn	122Sn	123Sn	124Sn	132Sn
STABLE	115.09 D	STABLE	27.03 H	STABLE	129.2 D	STABLE	39.7 S						
0.97%	6 100.00%	0.66%	0.34%	14.54%	7.68%	24.22%	8.59%	32.58%	8-: 100.00%	4.63%	8-: 100.00%	5.79%	8-: 100.00%

- Wide mass range with little change of the underlying structure
 Experiment: Data available in stable and unstable isotopes
 - ► NRF: ¹¹²Sn, ¹¹⁶Sn, ¹²⁰Sn, ¹²⁴Sn
 - Coulomb dissociation: ^{124–132}Sn
 - Alpha scattering: ^{112–132}Sn
 - ► Proton scattering: ¹²⁰Sn, ¹¹²Sn, ¹¹⁴Sn, ¹¹⁶Sn, ¹¹⁸Sn, ¹²²Sn, ¹²⁴Sn

112Sn STABLE 0.97%	113Sn 115.09 D	114Sn STABLE 0.66%	115Sn STABLE 0.34%	116Sn STABLE 14.54%	117Sn STABLE 7.68%	118Sn STABLE 24.22%	119Sn STABLE 8.59%	120Sn STABLE 32.58%	121Sn 27.03 H	122Sn STABLE 4.63%	123Sn 129.2 D	124Sn STABLE 5.79%	132Sn 39.7 S
	e: 100.00%								β-: 100.00%		β-: 100.00%		β-: 100.00%

- Wide mass range with little change of the underlying structure
 Experiment: Data available in stable and unstable isotopes
 - NRF: ¹¹²Sn, ¹¹⁶Sn, ¹²⁰Sn, ¹²⁴Sn
 - Coulomb dissociation: ^{124–132}Sn
 - Alpha scattering: ^{112–132}Sn
 - Proton scattering: ¹²⁰Sn, ¹¹²Sn, ¹¹⁴Sn, ¹¹⁶Sn, ¹¹⁸Sn, ¹²²Sn, ¹²⁴Sn

112Sn	113Sn	114Sn	115Sn	116Sn	117Sn	118Sn	1195n	120Sn	121Sn	122Sn	123Sn	124Sn	132Sn
STABLE	115.09 D	STABLE	27.03 H	STABLE	129.2 D	STABLE	39.7 S						
0.97%	€ 100.00%	0.66%	0.34%	14.54%	7.68%	24.22%	8.59%	32.58%	β-: 100.00%	4.63%	β-: 100.00%	5.79%	β-: 100.00%

- Wide mass range with little change of the underlying structure
 Experiment: Data available in stable and unstable isotopes
 - NRF: ¹¹²Sn, ¹¹⁶Sn, ¹²⁰Sn, ¹²⁴Sn
 - Coulomb dissociation: ^{124–132}Sn
 - Alpha scattering: ¹¹²⁻¹³²Sn
 - ▶ Proton scattering: ¹²⁰Sn, ¹¹²Sn, ¹¹⁴Sn, ¹¹⁶Sn, ¹¹⁸Sn, ¹²²Sn, ¹²⁴Sn
- Theory: Many calculations for PDR available
 - ► N. Tsoneva et al., NPA 731 (2004); PRC 77 (2008)
 - N. Paar et al., PLB 606 (2005)
 - J. Piekarewicz, PRC 73 (2006)
 - S. Kamerdizhiev, S.F. Kovaloo, PAN 65 (2006)
 - ▶ J. Terasaki, J. Engel, PRC 74 (2006)
 - E. Litvinova et al., PLB 647 (2007); PRC 78 (2008)

6 July 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2018 | Project B04 | Sergej Bassauer | 7

6 July 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2018 | Project B04 | Sergej Bassauer | 7

- Reaction: (p,p')
- Beam energy: 295 MeV

- Reaction: (p,p')
- Beam energy: 295 MeV
- ▶ Resolution: ~ 30 keV

- Reaction: (p,p')
- Beam energy: 295 MeV
- Resolution: \sim 30 keV
- Measured angles: 0°, 2.5°, 4.5°

- Reaction: (p,p')
- Beam energy: 295 MeV
- Resolution: ~ 30 keV
- Measured angles: 0°, 2.5°, 4.5°
- ► Main targets: ¹¹²Sn, ¹¹⁴Sn, ¹¹⁶Sn, ¹¹⁸Sn, ¹²²Sn, ¹²⁴Sn

Preliminary Results

Preliminary Results

⁶ July 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2018 | Project B04 | Sergej Bassauer | 9
Preliminary Results

⁶ July 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2018 | Project B04 | Sergej Bassauer | 9

Preliminary Results

⁶ July 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2018 | Project B04 | Sergej Bassauer | 9

 Inelastic proton scattering at iThemba LABS

- Inelastic proton scattering at iThemba LABS
 - Beam energy: 200 MeV

- Inelastic proton scattering at iThemba LABS
 - Beam energy: 200 MeV
 - Resolution: ~ 45 keV

- Inelastic proton scattering at iThemba LABS
 - Beam energy: 200 MeV
 - Resolution: ~ 45 keV
 - ► Targets: ¹⁴⁴⁻¹⁵⁰Nd, ¹⁵²Sm

- Inelastic proton scattering at iThemba LABS
 - Beam energy: 200 MeV
 - Resolution: ~ 45 keV
 - Targets: ^{144–150}Nd, ¹⁵²Sm
- P. Carlos *et al.*, Nucl. Phys. A 172 (1971)

GIANT DIPOLE RESONANCE

- Inelastic proton scattering at iThemba LABS
 - Beam energy: 200 MeV
 - Resolution: ~ 45 keV
 - ► Targets: ¹⁴⁴⁻¹⁵⁰Nd, ¹⁵²Sm
- P. Carlos *et al.*, Nucl. Phys. A 172 (1971)
- L. M. Donaldson *et al.*, Phys. Lett. B 776 (2018)

- Inelastic proton scattering at iThemba LABS
 - Beam energy: 200 MeV
 - Resolution: ~ 45 keV
 - ► Targets: ¹⁴⁴⁻¹⁵⁰Nd, ¹⁵²Sm
- P. Carlos *et al.*, Nucl. Phys. A 172 (1971)
- L. M. Donaldson *et al.*, Phys. Lett. B 776 (2018)
- No double-hump structure found!

► A. Krugmann *et al.*, to be published

- A. Krugmann *et al.*, to be published
- P. Carlos *et al.*, Nucl. Phys. A 225 (1974)

- A. Krugmann *et al.*, to be published
- P. Carlos *et al.*, Nucl. Phys. A 225 (1974)
- D. M. Filipescu, *et al.*, Phys. Rev. C 90 (2014)

- A. Krugmann *et al.*, to be published
- P. Carlos *et al.*, Nucl. Phys. A 225 (1974)
- D. M. Filipescu, *et al.*, Phys. Rev. C 90 (2014)
- Different ratio of K=0 and K=1 components compared to (γ, xn) data

¹⁵⁴Sm: K-splitting of the PDR?

 A. Krugmann *et al.*, to be published

¹⁵⁴Sm: K-splitting of the PDR?

- A. Krugmann *et al.*, to be published
- Relative energy splitting consistent with GDR

¹⁵⁴Sm: K-splitting of the PDR?

- A. Krugmann *et al.*, to be published
- Relative energy splitting consistent with GDR
- Strength ratio 1:1

Summary

Tin isotope chain

- Tin isotope chain
- Neodymium isotope chain

- Tin isotope chain
- Neodymium isotope chain
- ► K-splitting in ¹⁵⁴Sm

- Tin isotope chain
- Neodymium isotope chain
- K-splitting in ¹⁵⁴Sm

Summary

- Tin isotope chain
- Neodymium isotope chain
- K-splitting in ¹⁵⁴Sm

Outlook

Summary

- Tin isotope chain
- Neodymium isotope chain
- K-splitting in ¹⁵⁴Sm

Outlook

Multipole Decomposition Analysis

Summary

- Tin isotope chain
- Neodymium isotope chain
- K-splitting in ¹⁵⁴Sm

Outlook

- Multipole Decomposition Analysis
- Determine dipole polarisability, GSF, LD

Collaborators

Institut für Kernphysik, TU Darmstadt, Germany

A. D'Alessio, M. Hilcker, J. Isaak, T. Klaus, P. von Neumann-Cosel,N. Pietralla, V. Yu. Ponomarev, A. Richter, M. Singer, G. Steinhilber,V. Werner, M. Zweidinger

RCNP, Osaka, Japan

S. Adachi, N. Aoi, P. Y. Chan, A. Czeszumska, H. Fujita, Y. Fujita, G. Gey, H. T. Ha, K. Hatanaka, E. Ideguchi, A. Inoue, C. Iwamoto, N. Kobayashi, S. Nakamura, H. J. Ong, A. Tamii

...and many others!

Level Densities of 1⁻ States

⁶ July 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2018 | Project B04 | Sergej Bassauer | 15

Level Densities of 1⁻ States

⁶ July 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | SFB-Workshop 2018 | Project B04 | Sergej Bassauer | 16

$$\langle \Gamma(E_i) \rangle = \frac{1}{\rho(E_i)} \int_0^{E_i} E_{\gamma}^3 f^{E_1}(E_{\gamma}) \rho(E_i - E_{\gamma}) dE_{\gamma}$$

$$f^{E_1}(E_{\gamma}) = \frac{\langle \sigma_{abs}^{E_1} \rangle}{3(\pi \hbar c)^2 E_{\gamma}^3} \bigoplus_{g.s.} f^{e_1} \bigoplus_{g.s.} f^{e$$

$$\langle \Gamma(E_i) \rangle = \frac{1}{\rho(E_i)} \int_0^{E_i} E_{\gamma}^3 f^{E_1}(E_{\gamma}) \rho(E_i - E_{\gamma}) dE_{\gamma}$$

$$f^{E_1}(E_{\gamma}) = \frac{\langle \sigma_{abs}^{E_1} \rangle}{3(\pi \hbar c)^2 E_{\gamma}^3} \bigoplus_{g,g} f^{E_1}(E_{\gamma}) \rho(E_i, J) \bigoplus_{g,g} f^{E_1}(E_{\gamma}) = \frac{\langle \Gamma_0^{E_1}(E_{\gamma}) \rangle}{E_{\gamma}^3} \rho(E_i, J) \bigoplus_{g,g} f^{E_1}(E_{\gamma}) = \frac{\langle \Gamma_0^{E_1}(E_{\gamma}) \rangle}{f(MeV^3)}$$

Brink-Axel hypothesis

Brink-Axel nypotnesis
► GSF depends only on E_γ

$$\langle \Gamma(E_i) \rangle = \frac{1}{\rho(E_i)} \int_0^{E_i} E_{\gamma}^3 f^{E_1}(E_{\gamma}) \rho(E_i - E_{\gamma}) dE_{\gamma}$$

$$f^{E_1}(E_{\gamma}) = \frac{\langle \sigma_{abs}^{E_1} \rangle}{3(\pi \hbar c)^2 E_{\gamma}^3} \bigoplus_{g.s.} e_{g.s.} e$$

- Brink-Axel hypothesis
 - GSF depends only on E_{γ}
 - Independent of the structure of initial state

Determination of the level density

Background from MDA

Determination of the level density

- Background from MDA
- Stationary spectrum

$$\mathsf{d}(E_x) = \frac{g(E_x)}{g_{>}(E_x)}$$

Determination of the level density

 $g(E_x)$ $g_>(E_x)$

- Background from MDA
- Stationary spectrum

$$\mathsf{d}(E_x) = \frac{g(E_x)}{g_{>}(E_x)}$$

• Autocorrelation function $C(\varepsilon) = \frac{\langle d(E_x) \cdot d(E_x + \varepsilon) \rangle}{\langle d(E_x) \rangle \cdot \langle d(E_x + \varepsilon) \rangle} \stackrel{\stackrel{(1.025)}{=}}{=} \frac{1.025}{1.000} \stackrel{(1.025)}{=} \frac{1.025}{1.00$

 $\frac{d^2\sigma}{MdE}$ (mb/sr/MeV)

20

20.

120Sn(p.p')

MDA background
Determination of the level density

Determination of the level density

