Report on Project A07 New EM Properties of Collective Excitations

N. Pietralla for

NP, J. Wambach, V. Yu. Ponomarev, T. Klaus, G. Steinhilber + SFB 1245

- Principle of (e,e'γ) Reactions
- Physics Motivation:
 - Gamma-decay of GDR
 - Vorticity of Nuclear Currents
- Theory Advances
 - DWBA code for (e,e'γ)
- Experimental Setup:
 - Requirements
 - Data Acquisition
- Summary and Outlook

TECHNISCHE

Principle of (e,e'γ) Reactions

TECHNISCHE UNIVERSITÄT DARMSTADT

 Inelastic nuclear excitation by electron scattering and coincident detection of prompt γ-decay

D.G. Ravenhall et al., Ann. Physics, 178 (1987)

Advantages of $(e,e'\gamma)$

- Pure e.m. interaction
- Exclusive reaction channel
- Selected excitation energy

Spectroscopy Tool - Physics Motivation: Gamma Decay of the Giant Dipole Resonance

- GDR γ-decay branching to ground state: ≈ 1 %
 J. R. Beene et al., Phys. Rev. C (1990)
- Search for gamma-decay of GDR to intrinsic excitations
 V. Yu. Ponomarev et al., Nucl. Phys. (1992)
- Study variation of direct decay as a function of E_x
 → fine structure of GDR
- Study form factor of GDR in a clean way w/o multipole decomp. analysis

Access Tool - Physics Motivation: Vorticity of Nuclear Currents

D.G. Ravenhall and J. Wambach, Nucl. Phys. A 475, 468 (1987)

- Finite quantum system may exhibit confined currents with vorticity
- Vorticity strength contributes to transversal excitation amplitudes
- Polarization of excited states due to transversal/longitudinal interference
- Resulting rotation of γ distribution to study transversal form factors in (e,e' γ) reactions

Access Tool - Physics Motivation: Vorticity of Nuclear Currents

- Pioneering (e,e'γ) coincidence experiment
- Rotation of angular distribution of 2_1^+ in ¹²C caused by nuclear currents

C. N. Papanicolas et al., Phys. Rev. Lett. 54 (1985)

• Investigate rotation of angular distribution of $2^+_{1,2}$ and 3^-_1 in ${}^{92}Zr$

Formalism of (e,e'γ) Reactions

TECHNISCHE UNIVERSITÄT DARMSTADT

SFB 124

Formalism of (e,e'y) Reactions

- (e,e' γ) is a third-order process [~ α^3]
- It interferes coherently with bremsstrahlung

"Bremsstrahlung background in inelastic electron-nucleus collisions"

D.H. Jakubassa-Amundsen and A. Krugmann, J. Phys. G: Nucl. Part. Phys. 44 (2017) 045103

 PWBA is insufficient for the description of bremsstrahlung for increasing momentum transfers in (e,e'γ) reactions

Formalism of (e,e'y) Reactions, PWBA

 $\frac{d^{3}\sigma_{\text{tot}}}{d\omega d\Omega_{k}d\Omega_{f}} = \frac{4\pi^{2}\omega^{2}E_{i}E_{f}k_{f}}{k_{i}c^{5}}\frac{1}{2}\sum_{\zeta_{i}}\sum_{\zeta_{f}}\sum_{\lambda}$ $\times \left|\frac{1}{c}M_{fi}^{\text{brems}} + \frac{1}{c}\left(M_{fi}^{(1)} + M_{fi}^{(2)}\right)\right|^{2}$ $W_{fi} = \delta(E_{f} - E_{i} + \omega)M_{fi}$ $W_{fi}^{(1)} = i\frac{Z_{T}c^{2}}{4\pi\sqrt{\omega}}\delta(E_{f} - E_{i} + \omega)\frac{1}{\omega - E_{x} + i\Gamma_{n}/2}$ $\times \sum A_{ni}^{\text{exc}}(M_{i}, M_{n})A_{fn}^{\text{dec}}(M_{n}, M_{f}),$

$\begin{aligned} A_{fn}^{\text{dec}}(M_n, M_f) &= -4\pi i (J_n M_n L M | J_f M_f) \sum_{L'} (-i)^{L'} \\ &\times \sum_{\mu, \varrho} (\boldsymbol{e}_{\varrho}^+ \boldsymbol{\epsilon}_{\lambda}^*) (L' \mu 1 \varrho | L M) Y_{L'\mu}^*(\hat{\boldsymbol{k}}) R_{L'}(k) \\ R_{L'}(k) &= \int_0^\infty r^2 dr \; j_{L'}(kr) J_{LL'}(r) \end{aligned}$

- ExDec (e,e'γ) amplitude interferes coherently with bremsstrahlung
- It has a resonant structure
- Its partial amplitudes depend on the transition currents

"Coincident excitation and radiative decay in electron-nucleus collisions"

D.H. Jakubassa-Amundsen and V. Yu. Ponomarev, Phys. Rev. C 95 (2017) 024310.

Prediction for (e,e'γ) Reactions on ⁹²Zr

- Transition current densities to the 2⁺₁ and 2⁺₂ states of ⁹²Zr as calculated in the QPM
- "Convection currents are small compared to magnetization currents"

"Coincident excitation and radiative decay in electron-nucleus collisions"
D.H. Jakubassa-Amundsen and V. Yu. Ponomarev,
Phys. Rev. C 95 (2017) 024310.

- Triple-differential cross section for the 2⁺₂ decay excited in 75 MeV (e,e'γ) reaction with electron scattered to 40° (a) and 179° (b) as a function of photon angle.
- Large effect at small cross section

"Coincident excitation and radiative decay in electron-nucleus collisions" D.H. Jakubassa-Amundsen and V. Yu.

Ponomarev,

Phys. Rev. C 95 (2017) 024310.

Theory Advances in A07

- Study of magnetization and convection currents in (e,e') reactions in DWBA
- Study of bremsstrahlung as a competitor to resonant ExDec (e,e'γ) reaction
- Establishment of a DWBA code for (e,e'γ) reactions and application to ⁹²Zr
- Prediction for (e,e'γ) reactions on the PDR of ¹⁴⁰Ce in DWBA

Establishment of Experimental Set-up

- Halo-free electron beam
- Q-CLAM coincidence spectrometer
- Target area
- Gamma spectrometer
- Coincidence DAQ

Halo-Free Electron Beam @ S-DALINAC

Halo-Free Electron Beam @ S-DALINAC

funded by the DFG

High-Acceptance Spectrometer: Q-CLAM

QCLAM Spectrometer

- Max. momentum: 220 MeV/c
- Momentum acceptance: $\Delta p/p = \pm 10 \%$
- Solid angular acceptance: 35 msr
- Energy resolution: $\Delta E/E \approx 5 \cdot 10^{-4}$
- Scattering angles:
 25°-155°, 180°

⇒ Well suited for coincidence experiments

Refurbishment of Q-CLAM Spectrometer

(together with A01, A03, B02, B03 and AccelencE)

- Wiring of Multi-Wire Drift Chambers

 (A. D'Alessio & Q-CLAM group)
- Completion of vaccum system
- Installation target chamber and its adapter to Q-CLAM
- Remote control of target ladder

QCLAM Sieve Slit Measurement

(together with A01, A03, B02, B03 and AccelencE)

26.03.2019 | SFB 1245 – Workshop | Report on Project A07 | New EM Properties of Collective Excitations | 19

QCLAM ¹²C Measurement

(together with A01, A03, B02, B03 and AccelencE)

Gamma Detector Array

(e,e'y) Data Acquisition

- 2 separate DAQs, MBS based
- QCLAM DAQ: M. Singer (→B02)
- Simultaneous acquisition of singles and coincidence data
- Electron trigger opens gate
- Full pulse shape analysis possible
- Electron trigger generates timestamps in LaBr DAQ
- Coincidence matching by mapping trigger patterns

G. Steinhilber

Data Analysis

Simulation of (e,e'y) Performance

Simulation of (e,e' γ) **Performance**

26.03.2019 | SFB 1245 – Workshop | Report on Project A07 | New EM Properties of Collective Excitations | 25

TECHNISCHE

UNIVERSITÄT DARMSTADT

Simulation of (e,e' γ) **Performance**

TECHNISCHE UNIVERSITÄT DARMSTADT

26.03.2019 | SFB 1245 – Workshop | Report on Project A07 | New EM Properties of Collective Excitations | 26

Simulation of (e,e'y) Performance

Summary and Outlook

Summary

- (e,e'γ) coincidence-spectroscopy setup established
- DAQ for coincidence measurement developed
- Setup tested with cosmic showers

Outlook

- Performance demonstration foreseen for June
- Pulsed electron beam → further background suppression for more challenging experiments
 - L. Stobbe, DPG AKBP 15.12

Thank you!

- 4 LaBr detectors at the QCLAM spectrometer
- Successful demonstration of mapping e to γ data

26.03.2019 | SFB 1245 – Workshop | Report on Project A07 | New EM Properties of Collective Excitations | 30

Decay of Resonances

- GDR γ-decay branching: ≈ 1 %
 J. R. Beene et al., Phys Rev. C (1990)
- Relative branching from GDR to 2⁺₁ almost as strong as to ground state
- GDR built on 2_1^+ $\Gamma_{\gamma 2_1^+} \left(E_{1^- \nu} - E_{2_1^+} \right) \sim \left| R_1 (2^+ 1) \sum_i P_{1^- i}^{2_1^+} \langle 2_1^+ || E1 || [1_i^- \otimes 2_1^+]_{1^-} \rangle \right|$ V. Yu. Ponomarev et al., Nucl. Phys. (1992)
- Investigate γ -decay of GDR in ^{112,124}Sn

Requirements: Data Acquisition Data Analysis

