SFB 1245: Nuclei: From fundamental Interactions to Structure and Stars

B01: Electroweak interactions in nuclei and matter

PIs: Gabriel Martínez-Pinedo and Achim Schwenk

People

TECHNISCHE UNIVERSITÄT DARMSTADT

Postdocs

- Kyle Wendt (Lawrence Fellow, LLNL)
- Sebastian König

Doctoral Researchers

- Alex Bartl, at present Svenja Greif
- Dag Fahlin Strömberg

Master Theses:

 Svenja Greif, Jonas Keller, Sabrina Schäfer, Marc Schönborn, Christian Schwebler

Bachelor Theses:

• Steven Bilaj, Malte Cordts, Mirko Plößer

Publications:

TECHNISCHE UNIVERSITÄT DARMSTADT

17 publications in first period **(1 Nature Phys., 5 PRL)**, 4 Editors' suggestions, 2 press releases

Key Publications

Discrepancy between experimental and theoretical β -decay rates resolved from first principles

P. Gysbers, et al, Nat. Phys. (2019).

Equation of state sensitivities when inferring neutron star and dense matter properties S. K. Greif, et al, Mon. Not. R. Astron. Soc. 2019

Thermonuclear supernova triggered by electron captures

O. S. Kirsebom, et al, submitted to Science

Fingerprints of Heavy-Element Nucleosynthesis in the Late-Time Lightcurves of Kilonovae

M.-R. Wu, et al, Phys. Rev. Lett. 122, 062701 (2019).

Chiral EFT for coupling to external sources

Chiral EFT for electroweak currents

consistent electroweak one- and two-body (meson-exchange) currents

magnetic moments in A=3 Hernandez, Bacca (MZ), Seutin, Hebeler, König, AS

	$^{3}\mathrm{H}$	³ He	%Diff from Exp
$\mu_{\rm LO}^{[1]}$	2.622	-1.783	~12-16%
$\mu_{ m LO}^{[1]}+\mu_{ m Intrinsic}^{[2]}$	2.816	-1.973	~5-7%
$\mu_{ ext{LO}}^{[1]}+\mu_{ ext{NLO}}^{[2]}$	2.849(7)	-2.006(6)	~4-6%
μ_{Exp}	2.979	-2.128	-

application to ⁶Li with A02 Gayer et al., in prep. Gamow-Teller beta decay of ¹⁰⁰Sn Gysbers, ..., AS, Wendt, Nature Phys. (2019)

two-body currents are key for quenching puzzle of beta decays

First limits for WIMP-pion interactions

in collaboration with XENON1T Aprile et al., PRL (2019) based on chiral EFT for WIMP-nucleon/pion interactions

Resonance properties from finite volume König et al., PRC (2018) with A02 resonance energy from avoided level crossings in 3-body spectrum

resonance width from spacing between avoided level crossings

genuine 3-body resonance probed by varying short-range 3-body potential

EOS impact on core-collapse supernova simulations

Yasin, Schäfer, Arcones, AS, 1812.02002 with B06 constructed EOS that systematically vary nuclear matter properties between LS and Shen et al. EOS

	m^*/m	K	$E_{\rm sym}$	L	n_0	В
LS220	1.0	220	29.6	73.7	0.155	16.0
Shen	0.634	281	36.9^{a}	110.8	0.145	16.3
Theo.	0.9(2)	215(40)	32(4)	51(19)	0.164(7)	15.86(57)

thermal contributions/m^{*} are key for proto-neutron star contraction

faster contraction aids supernova shock to more successful explosion

Impact on inferring EOS and neutron star properties

Greif, Raaijmakers, Hebeler, AS, Watts, MNRAS (2019) with B05 based on chiral EFT + polytropic or new speed-of-sound extrapolation

Impact on inferring EOS and neutron star properties

Greif, Raaijmakers, Hebeler, AS, Watts, MNRAS (2019) with B05 based on chiral EFT + polytropic or new speed-of-sound extrapolation

R (km)

R (km)

1.00

What is the final outcome of intermediate mass stars?

Outcome determined by the central density at which oxygen burning sets in

28/03/2019 | 4th Workshop SFB 1245 | Gabriel Martinez-Pinedo | B01:Electroweak interactions in nuclei and nuclear matter | 11

Central evolution ONe core

Evolution central temperature and density (Dag Fahlin Strömberg using MESA)

Non central oxygen ignition at lower densities favors thermonuclear explosion

Open issues

- What is the impact of ²⁵Mg abundance?
- Why are the transition strengths so different for ²⁰Ne and ³⁶Cl? What about the analog E2 transitions (B02)?
- What is the role of the fourth forbidden between ²⁴Na and ²⁴Ne (B02)?
- Is Oxygen burning modified by the production of ²⁰O that allows for new reaction channels

$${}^{16}0 + {}^{20}0$$

 ${}^{20}0 + {}^{20}0$

in addition to standard channel

 $^{16}0 + ^{16}0$

Kilonova: Electromagnetic transient powered by decay of r-process nuclei

TECHNISCHE UNIVERSITÄT DARMSTADT

- Time evolution determined by the radioactive decay of r-process nuclei
- Two components (Kasen et al, Nature 551, 80 (2017)
 - Blue dominated by light elements (Z < 50) ($M = 0.025 M_{\odot}$, v = 0.3c, $X_{lan} = 10^{-4}$)
 - Red due to presence of Lanthanides ($M = 0.04 M_{\odot}$, v = 0.15c, $X_{lan} = 10^{-1.5}$)
- No direct evidence production of specific nuclei. No spectral features identified
- Consistent with production whole range r-process nuclei (A=69-238)

Nuclear fingerprints late-time light curve

- Late-time bolometric light curve provides alternative method to constrain:
 - Ye ejected material
 - Range of nuclei produced
- Individual nuclei may dominate the light curve (α-decay of ²²³Ra and ²²⁵Ac and fission of ²⁵⁴Cf)
- Sensitive to the yields of first peak (A~80) elements

M.-R. Wu, et al, Phys. Rev. Lett. 122, 062701 (2019).

SFB 1245

Masses and half-lives N=50 nuclei

TECHNISCHE UNIVERSITÄT DARMSTADT

Masses and beta-decay half-lives including beta-delayed neutron emission determine the formation of the first r-process peak

Reiter et al, arXiv:1810.11561

Extend shell-model calculations to N=50 to predict masses and beta-decay half-lives in the region

Future plans

- exploration of Gamow-Teller and forbidden transitions including manybody correlations and two-body currents (also with B02)
- comparisons against effective theories for heavy nuclei
- development of chiral-EFT-based neutrino-matter interactions consistent with the equation of state
- applications to supernova and merger simulations in B06 and B07
- understanding the impact of weak processes on the evolution of intermediate mass stars and their nucleosynthesis (with B02)
- Impact of beta-decay rates around N=50 on the production of first peak r-process elements and the associated kilonova emission.

