SFB 1245 Project B03

Summary and look to the B02 future

Volker Werner | SFB 1245 Workshop | 28 March 2019

B03 Nuclear Structure in 0νββ Decay

B03 Ονββ Decay - Configuration Mixing

- Enhanced $0^+ \rightarrow 0^+$ E0 strength
 - known in ⁷⁶Se
 - unknown in ⁷⁶Ge
- High-resolution electron scattering

• **Decay branches** of the scissors mode in

UNIVERSITÄT

MaRS~

- ¹⁵⁰Sm/¹⁵⁰Nd NEMO
 - ⁸²Se/⁸²Kr (Super-)NEMO
- ¹⁰⁰Mo/¹⁰⁰Ru **NEMO**, MOON
- DHIPS/S-DALINAC: cross sections, spin assignments
- HI_yS/TUNL: parities, decay branches

q (fm⁻¹) A. Krugmann, Doctoral Dissertation, TU Darmstadt 2014

Volker Werner | TU Darmstadt | AG Pietralla | SFB 1245 Workshop | 28 March 2019 | B03 3

B03 WIMP - Nucleus Scattering

Xe deferred

• Gas target constructed \rightarrow cylinder

UNIVERSITÄ

- Due to extended geometry necessary energy resolution not reached
- In addition: "sub-optimal" target chamber alignment for test shot
- Need: frozen target, or thin "sheet" gas target

Xe deferred

- New gas target ready sheet, walls front/back 0.1 mm, LXe 1 mm @ 1 bar
- LINTOTT chamber aligned, waiting ...

¹⁵⁴Sm/Gd - first constraints from scissors mode decays

UNIVERSITÄT

Volker Werner | TU Darmstadt | AG Pietralla | SFB 1245 Workshop | 28 March 2019 | B03

Location of 0vßß Candidates

MaRS~

**) SFB 124 Ĩ

TECHNISCHE

UNIVERSITÄT

DARMSTAD

Scissors Mode Decays from HIGS

Ονββ-decay mother ¹⁵⁰Nd: $\frac{\Gamma_{0_{2}^{+}}}{\Gamma_{0_{1}^{+}}} = 0.068(5)$ $B(M1 \ ; \ 1_{Sc}^{+} \rightarrow 0_{1}^{+}) = 0.24(3) \ \mu_{N}^{2}$ $B(M1 \ ; \ 1_{Sc}^{+} \rightarrow 0_{2}^{+}) = 0.035(5) \ \mu_{N}^{2}$ **Ονββ-decay daughter** ¹⁵⁰**Sm:** $\frac{\Gamma_{0_{2}^{+}}}{\Gamma_{0_{1}^{+}}} = 0.19(5)$ $B(M1; 1_{Sc}^{+} \rightarrow 0_{1}^{+}) = 0.07(1) \mu_{N}^{2}$ $B(M1; 1_{Sc}^{+} \rightarrow 0_{2}^{+}) = 0.030(9) \mu_{N}^{2}$

J. Kleemann, BA/MA thesis

New IBM-2 Description

TECHNISCHE UNIVERSITÄT

DARMSTAD

J. Kleemann, BA/MA thesis

Revised Matrix Elements

Novel data on decay characteristics of scissors mode in $^{150}\mathrm{Nd}$ and $^{150}\mathrm{Sm}$

- \rightarrow Constraints on IBM-2 Majorana parameters
- → Updated IBM-2 $0\nu\beta\beta$ -NME calculation

J. Kotila, private communication (2019)

→ Updated EDF NME calculation?

MaRS~

UNIVERSITÄT

 \rightarrow More reliable extraction of neutrino mass from $0\nu\beta\beta$ -decay rate

⁸²Se / ⁸²Kr analysis finished

TECHNISCHE UNIVERSITÄT DARMSTADT

- High-precision data on decay of low-lying dipole strength in 0vββ partners ⁸²Kr and ⁸²Se
- Sensitive to el. cross sections of ~1 eVb and branchings of a few percent

- > Are we seeing true scissors mode?
- Is the model space able to describe the data?
- > Implications for 0vββ decay?

U. Gayer

⁸²Se - spin-flip competing?

MaRS~

TECHNISCHE UNIVERSITÄT TECHNISCHE UNIVERSITÄT DARMSTADT

- Shell model calculations using the code NuShellX
- jun45 interaction in jj44 model space

Volker Werner | TU Darmstadt | AG Pietralla | SFB 1245 Workshop | 28 March 2019 | B03 14

Problematic State at Q-Value (⁸²Se→⁸²Kr)

MaRS~

TECHNISCHE UNIVERSITÄT DARMSTADT

TECHNISCHE

UNIVERSITÄT

Asymmetries ¹⁵²Sm: revise scissors mode

Lokal effektive Boson Charges

F-skalar Transition

 $B(E2; 2_1^+ \to 0_1^+) = 145(16)$ W.u.

F-vector Transition

 $\Sigma B(E2; 1_{sc}^+ \to 2_1^+) = 1.25_{-0.50}^{+0.29}$ W.u.

$$e_{\nu}^{B} = 0.174 \, eb$$

 $e_{\pi}^{B} = 0.126 \, eb$

T. Otsuka und J.N. Ginocchio, Phys. Rev. Lett. 54, 777 (1985)

TECHNISCHE UNIVERSITÄT

DARMSTADT

⁹⁶Zr - Type II Shell Evolution

MaRS~

UNIVERSITÄT

Volker Werner | TU Darmstadt | AG Pietralla | SFB 1245 Workshop | 28 March 2019 | B03 18

98Zr ground state spherical

MaRS~

UNIVERSITÄT

W. Witt, V.W. et al., PRC 98, 041302(R) (2018 P. Singh et al., PRL 121, 192501 (2018) W. Witt, V.W. et al., *in preparation*

Next: M1's for (v,v')

MaRS<

UNIVERSITÄT

Foreseen neutrino detectors (e.g., Mo-based MOON) work by

 $n + v_e \rightarrow p + e^-$ and (v,v')

v-scattering excites M1 excitation \rightarrow Spin-Flip / GT excitations

We need to know where, and how much M1 strength there is.

Neutrino-detection Materials: ⁴⁰Ar

TECHNISCHE UNIVERSITÄT DARMSTADT

Experimental constraints for these reactions?

Neutrino-Nuclear vs. E-M

Charged-current ${}^{40}Ar(v,e){}^{40}K^*$

→ Study β^+ -decay of mirror nucleus 40Ti ${}^{40}Ti \rightarrow v_e + e^+ + {}^{40}Sc$

M. Bhattacharya, C.D. Goodman, A. García, Phys. Rev. C 80 (2009) 055501

Neutral current ${}^{40}Ar(v,v'){}^{40}Ar^*$

Neutrino-nuclear cross section

$$\sigma_{i,f}(E_{\nu}) = \frac{G_F^2 g_A^2}{\pi (2J_i + 1)} (E_{\nu} - \omega)^2 |\langle f|| \sum_k s(k) \tau(k) ||i\rangle|^2$$

K. Langanke et al., Phys. Rev. Lett. 93 (2004) 202501

Electromagnetic M1 operator

$$O(M1) = \sqrt{\frac{3}{4\pi}} \sum_{k} [l(k)t(k) + (g_{s}^{p} - g_{s}^{n})s(k)t(k)] \mu_{N}$$

Less M1 Strength in Experiment

UNIVERSITÄT

 T.C. Li, N. Pietralla *et al.*, Phys. Rev. C 73 (2006) 054306

TECHNISCHE

UNIVERSITÄT DARMSTADT

Energy range: 7.7 MeV – 11.0 MeV 1 M1 excitation observed

• New data

Energy range: 4.3 MeV – 7.7 MeV 5 M1 excitations observed

Polarimetry with polarized photon beams

**

TECHNISCHE UNIVERSITÄT

DARMSTAD

26

First Check: ⁹⁰Sr (vs. ⁹⁰Mo)

Rusev et al., PRL 110, 022503 (2013)

UNIVERSITÄ

- Many individual 1⁺ states known
 - "giant-M1" resonance
 - close in energy
- Good test case for average method
- Measure side-by-side with ⁹⁰Mo
 - ⁹⁰Sr: closed pf-shell
 - ⁹⁰Mo: πg_{9/2} open
 - $\pi g_{7/2}$ s-f partner above N=50
- Later go to "swiss army knife of neutrino-nuclear physics": ¹⁰⁰Mo

Publications

- Directly B03 (scissors mode, M1-related, shape coex.):
 - Published: 1 PRL, 1 PRC
 - Submitted: 1 PRC
 - In preparation: 4 (PRC, maybe 1 PRL)
- Very closely relevant for B03:
 - Published: 3 PRL, 3 PRC(Rapid), 1 PRC, 1 NPA, 1 EPJA
 - Submitted: 1 EPJA
 - In preparation: 1 PRL, 1 PRC
- General NRF, other than scissors mode or shape coex.:
 - Published: 2 PLB, 3 PRC, 1 Rom. Rep. Phys.
 - Submitted: 1 PRC(Rapid)
 - In preparation: 1 PRC(Rapid)
- Other relevant:
 - 1 Nature, 2 PRL, 2 PLB, 1 PRC(Rapid), 2 PRC, 2 EPJA
- Best of
 - ⁴⁰Ar M1 reponse, Gayer, PRC

UNIVERSITÄT

- ¹⁵⁶Gd scissors mode, Beck, PRL
- ⁹⁸Zr shape coexistence, Witt, PRC(Rapid)

Theses

- Bachelor:
 - Köhler (⁷⁶Ge), Knösel (¹¹B), Kleemann (¹⁵⁰Sm), Papst (^{92,94}Zr), Ide (¹⁵²Sm)
- Master:
 - Gayer (^{48,50}Ti), Schilling (¹¹²Sn), Beck (¹⁵⁶Gd), Kleemann (¹⁵⁰Nd/¹⁵⁰Sm), Papst (¹⁶⁴Dy)
- Doctoral:
 - Zweidinger (⁹²⁻⁹⁶Zr)
- Related (e.g. shape coexistence, spectrometer enhancements):
 - Bachelor:
 - Ahmed (^{148,150}Ce)
 - Brandherm (LINTOTT trigger detector)
 - Master:
 - Ebert (scattering chamber)
 - Doctoral:
 - Witt (⁹⁸Zr), Koseoglou (¹⁴⁸Ce),

X-Links to other Projects

- A01:
 - Relative Self Absorption NRF
 - ¹²C B(E2) measurement
 - Publication ⁷Li RSA in preparation
- B01:
 - ⁴⁰Ar NRF, paper submitted
- B02:
 - Electro-weak interactions
- A07,B04:
 - Investigations into PDR, low-energy GDR tail at HIGS
- A04:
 - Medium-mass nuclei

UNIVERSITÄ

• Through NRF, but also complementary related studies

Workshops organized

- SEASTAR Workshop 2016 (in-beam spectroscopy at RIKEN), organizer
- High-resolution gamma-spectroscopy (in April), local committee
- AGATA with stable beams workshop, Legnaro March 2019, convener

Awards

- Haridas Pai (former NRF member)
 - Ramanujan fellow at SINP Kolkata (prestigious 5-year tenure-track path in India)
- Tobias Beck
 - Giersch Excellence Award
 - Msc-Forschungspreis Gerhard Herzberg Gesellschaft

Press / Media / PR

- Waldemar Witt, VW et al, ⁹⁸Zr, 2018
 - APS physics highlights
 - Welt der Physik
- Andreas Zilges et al, ELI-NP, 2018
 - Welt der Physik
- Knowledge transfer:
 - Became new member of NUMEN project (double-charge-exchange reactions)
 - Contributed to HIGS2 white paper (last HIGS umbrella proposal was used almost 1:1 for HIGS2 proposal)

