Strong-interaction matter at nuclear densities and beyond

Status report and future plans of project B05:
Nuclear matter equation of state for astrophysical applications

Kai Hebeler and Jens Braun

CRC 1245 Workshop
Darmstadt, 2019

QCD phase diagram: Neutron stars and the dense EoS

Low-energy effective theories

Functional methods

$\lesssim 60 \rho_{\text {sat }} \quad$ [Kurkela et al., 2014]
Perturbative methods

Outline

Chiral effective field theory (at lower densities)

- Systematic incorporation of NN, 3N, ... interactions
- EoS from MBPT: Order-by-order convergence
- Calculation of most advanced 3 N interactions
- Functional renormalization group (at higher densities)
- Dynamic generation of Fierz complete four-quark self-interactions by gauge degrees of freedom
- Connecting to low-energy regime and results on the EoS and the speed of sound
- Summary and plans for next funding period

QCD phase diagram: Neutron stars and the cold dense EoS

Chiral effective field theory

Functional methods

Chiral effective field theory of nuclear interactions

- Nuclear potentials $V_{N N}, V_{3 N}, \ldots(\Lambda)$, with LECs fitted to $\mathrm{NN}, 3 \mathrm{~N}, \ldots$ data - MBPT calculations, predictions for nuclear matter EoS

Chiral effective field theory of nuclear interactions

calculation of state-of-the-art 3N interactions for applications to matter and nuclei
[Hebeler et al. PRC 91 (2015)]

- Nuclear potentials $V_{N N}, V_{3 N}, \ldots(\Lambda)$, with LECs fitted to $N N, 3 N, \ldots$ data
- MBPT calculations, predictions for nuclear matter EoS

Efficient Monte-Carlo framework for MBPT calculations with chiral interactions

TECHNISCHE UNIVERSITÄT DARMSTADT

[Drischler, Hebeler, Schwenk, PRL122 (2019)]

- Improved studies of many-body uncertainties MBPT at high orders via automatic code generation, here: up to 4th order; 5th, 6th order in progress
- Constrain LECs using empirical nuclear matter saturation region
here: fit 3 N LECs c_{D}, c_{E} to ${ }^{3} \mathrm{H}$ and saturation point

Very low densities (dilute Fermi gas): pionless EFT

MPBT calculation of ground-state energy = expansion in $k_{F} a_{s}$

$$
E / E_{0}=1+0.357 k_{F} a_{s}+0.186\left(k_{F} a_{s}\right)^{2}+0.03\left(k_{F} a_{s}\right)^{3} \quad[\text { Bishop, Ann.Phys. } 77 \text { (1972)] }
$$ $-0.05\left(k_{F} a_{s}\right)^{4}+\ldots$ [Wellenhofer, Drischler, Schwenk (2018)]

Comparison with QMC calculations [Gandolfi et al. ARNPS 65 (2015), Pilati et al. PRL 105]

QCD phase diagram: Neutron stars and the cold dense EoS

$\lesssim 60 \rho_{\text {sat }}$ [Kurkela et al., 2014]

Functional methods

Strongly correlated matter at intermediate densities: variety of condensates as non-perturbative phenomena

- Stiffness of EoS
- Non-equilibrium processes, e.g. transport properties, cooling rate

Perturbative methods

- Quarks and gluons as only dofs
- Weak coupling expansion

Functional renormalization group (FRG): From high to low energies in QCD

TECHNISCHE UNIVERSITAT DARMSTADT

First results for the equation of state of symmetric nuclear matter

[pQCD results (no diquark gap!) from E. S. Fraga, A. Kurkela, and A. Vuorinen (2015)]

- Diquark gap is generated for all densities above the chiral transition
- Good consistency with χ EFT results!

Speed of sound of symmetric nuclear matter

[pQCD results (no diquark gap!) from E. S. Fraga, A. Kurkela, and A. Vuorinen (2015)]

- Speed of sound exhibits a maximum (open box: uncertainty estimate)
- Emergence of a diquark gap is crucial for the appearance of a maximum

Speed of sound of symmetric nuclear matter

TECHNISCHE UNIVERSITÄT DARMSTADT

- Speed of sound exhibits a
- Emergence of a diquark gap is crucial for the appearance of a maximum

Speed of sound of symmetric nuclear matter

TECHNISCHE

Work in progress (also for next funding period):

Inclusion of higher-order operators to narrow down uncertainty bands plus extended study of RG scheme dependencies

[pQCD results (no diquark gap!) from E. S. Fraga, A. Kurkela, and A. Vuorinen (2015)]

- Speed of sound exhibits a maximum (open box: uncertainty estimate)
- Emergence of a diquark gap is crucial for the appearance of a maximum

Summary

TECHNISCHE

- Number of published articles: 17 (based on SFB webpage)
- Number of articles currently under review: 2
- Highlight publications:
- C. Drischler, K. Hebeler, and A. Schwenk, Phys. Rev. Lett. 122, 042501 (2019)
- J. Braun, M. Leonhardt, and M. Pospiech, Phys. Rev. D 96, 76003 (2017) [Editor's suggestion]
- M. Leonhardt, M. Pospiech, J. Braun, C. Drischler, K. Hebeler, A. Schwenk, QCD constraints on the dense matter equation of state (in preparation)
- Additional articles in preparation:
- J. Braun, M. Leonhardt, M. Pospiech, Gluon-induced symmetry breaking patterns at high density

Summary

TECHNISCHE

- Major successes of the young researchers:
- M. Leonhardt: Travel prize of CRC 1245 (2018)
- M. Leonhardt: Best-poster prize, workshop on "From Correlation Functions to QCD Phenomenology", Bad Honnef (2018)
- C. Drischler: PostDoc at Berkeley, Feodor Lynen stipend (since Fall 2017)
- C. Drischler: Internship at Ohio State University (January 2017)
- (Co-)Organization of workshops:
- Functional Methods in Strongly Correlated Systems, Hirschegg, Austria, March 31 - April 7, 2019

Plans for upcoming period

Plans for upcoming period

Towards improved QCD constraints for neutron-rich matter at high densities

Current status:

[Kurkela, Fraga, Schaffner-Bielich, Vuorinen, ApJ 789 (2014)]
[Hebeler, Lattimer, Pethick, Schwenk, ApJ 773 (2013)]
Generalization of $f R G$ framework to isospin-asymmetric and pure neutron systems can significantly improve constraints

Challenge: Understanding the connection between nuclear matter and nuclei (A04)

[Drischler, Hebeler, Schwenk, PRL122 (2019)]

[Hoppe, Drischler, Hebeler,
Schwenk, Simonis, in preparation]

Challenge: Understanding the connection between nuclear matter and nuclei (A04)

quantitative connection still puzzling

[Hoppe, Drischler, Hebeler, Schwenk, Simonis, in preparation]

Thanks to the crew!

Backup

TECHNISCHE

Chiral effective field theory at lower densities

- Efficient Monte-Carlo framework for MBPT (automatic code generation; $4^{\text {th }}$ order)
- Improve fits of LECs for development of improved nuclear interactions guided by empirical nuclear saturation properties
- Possible to generalize framework to finite temperature

Functional renormalization group at higher densities

- Dynamical generation of four-quark interactions by gluodynamics, importance of Fierz-completeness at high density and low temperature
- Connecting to low-energy dynamics by utilizing RG flow of gluon-induced fourquark couplings at high densities
- Studies with diquark gap taken to be zero agree with perturbative calculations at hight density; however, gap plays an important role at intermediate densities
- Equation of state: consistent with perturbative calculations at high density and XEFT at low density

