B07: Equation of state and nucleosynthesis in neutron star mergers

SFB 1245 meeting, Darmstadt, 28/03/2019

PIS: Almudena Arcones, Andreas Bauswein

A break-through in astrophysics and beyond

- ► GW170817 first unambiguously detected NS merger
- Mutli-messenger observations: gravitational waves, gamma, X-rays, UV, optical, IR, radio

Detection August 17, 2017 by LIGO-Virgo network

 \rightarrow GW data analysis

→ follow-up observations probably largest coordinated
 observing campaign in astronomy
 (observations/time)

Announcement October 2017

Abbott et al. 2017

EM Observations

- Follow up observation (UV, optical, IR) starting ~12 h after merger (evolved over days)
 - \rightarrow ejecta masses, velocities, opacities
 - \rightarrow red and blue component fit data
- ► X-rays, radio several days after merger
- ► Gamma-rays 1.7 after merger

Abbott et al. 2017

Figure 1. NGC4993 *grz* color composites ($1'.5 \times 1'.5$). Left: composite of detection images, including the discovery *z* image taken on 2017 August 18 00:05:23 UT and the g and r images taken 1 day later; the optical counterpart of GW170817 is at R.A., decl. =197.450374, -23.381495. Right: the same area two weeks later.

Soares-Santos et al 2017

Implications of em transient / kilonova

- Emission in IR, optical compatible with a few 0.01 Msun of ejecta heated by radioactive decays during/after r-process
- Generally, remarkable overall agreement between observations and theoretical expectations (from hydro-simulations + nuclear network + radiative transfer)
- Roughly estimated merger rate * ejected mass = compatible with mergers being main producers of heavy r-process elements

(BUT: only order-of-magnitude accurate statement)

- Details unclear:
 - how much ejecta
 - from which components of the merger (dynamical vs. wind/disk ejecta)
 - abundances

 \rightarrow plenty of work required on the theory side for reliable interpretation of current and future data

 \rightarrow indispensable to judge overall contribution of mergers for Galactic enrichment and for detailed understanding of r-process nucleosynthesis

Ejecta and nucleosynthesis (subproject Arcones)

- ► Different ejection mechanisms → different ejecta components contributing to the r-process and em counterpart (can be comparable in mass)
- Main goal: Astro and nuclear physics uncertainties: astrophysical models challenging (e.g. neutrinos), impact of incompletely known EoSs, nuclear models of reactions of nuclei involved in r-process

Astro uncertainties: neutrino impact on ejecta composition and r-process

- Impact on dynamical ejecta
- Extend study to other secular ejecta components

Astro uncertainties: EoS on mass ejection and rprocess abundance

Bovard et al. 2017

- EoS strongly affects ejecta mass and thus kilonova brightness
- Smaller impact on abundances
 - \rightarrow Plan for B07: use SFB EoSs to study impact on nucleosynthesis

Nuclear uncertainties

- Neutrino-driven wind: weak r-process up to second peak (A=130)
 - \rightarrow similar analysis to B06 for supernovae
- Dynamical ejecta \rightarrow r-process up to uranium
- Abundances with uncertainties comparison with observations
- Relevant nuclear physics input: nuclear masses, beta decays, fission

Plan for B07: systematic study of neutron star merger nucleosynthesis (strong and weak r-process) exploring theoretical uncertainties from astrophysical conditions and nuclear physics input

Martin et al. 2016, first systematic uncertainty band for r-process abundances

GWs and EoS constraints (subproject Bauswein)

Inspiral

Post-merger

Current EoS constraints by GW170817

- ► Generally: EoS characterized by stellar parameters, e.g. radii
- Finite-size effects during inspiral:
 larger NSs → stronger tidal deformation → merge earlier
- encoded by tidal deformability

upper limit \rightarrow upper limit on NS radii 13.5 km \rightarrow nuclear EoS not very stiff

$$\Lambda = \frac{2}{3}k_2 \left(\frac{c^2 R}{G M}\right)^5$$

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}$$
Abbott et al. 2017 and follow-up studies

Current EoS constraints by GW170817

- Multi-messenger interpretation several ideas relying on different assumptions
- high Mej \rightarrow no direct BH formation (reasonable and simple assumption):

 M_{tot} = 2.74 M_{sun} < $M_{thres,BH}$ (EoS)

Empirical relation based simulations

$$M_{\rm thres} = M_{\rm thres}(M_{\rm max}, R_{1.6}) = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

 \rightarrow R1.6 > 10.7 km \rightarrow nuclear EoS not extremely soft

Bauswein et al. 2017

Future EoS constraints and plans within B07

- More accurate and robust measurements with current methods
- Collapse behavior \rightarrow maximum mass of nonrotating NSs, stronger radius constraints
- Postmerger GW emission

Bauswein et al. 2017

Postmerger Gravitational Waves

characterize EoS by radius of nonrotating NS with 1.6 $\rm M_{sun}$

Bauswein et al. 2012

Pure TOV/EoS property => Radius measurement via f_{peak}

GW data analysis: Clark et al 2014, Clark et al 2016, Chatziioannou et al 2017, ... \rightarrow detectable at a few 10 Mpc, i.e. in reach within the next years !!!

Plans for B07

- Relativistic hydrodynamics simulations of NS mergers (using two complementary tools including)
- Detailed investigation of collapse behavior
 - EoS dependence, mass ratio dependence
 - GW data analysis (with collaborators)
- Comprehensive analysis of postmerger spectrum
 - Origin and dependencies of spectral features
 - dependence on EoS and mass ratio
 - develop dedicated GW analysis to extract EoS effects

Nuclear physics impact on NS mergers and vice versa

- Nuclear EoS \rightarrow merger dynamics
 - \rightarrow GW emission (pre-merger and post-merger)
 - \rightarrow remnant stability and life time
 - \rightarrow conditions for short gamma-ray burst

 \rightarrow mass ejection and conditions for long-term evolution \rightarrow conditions r-process nucleosynthsis and nuclear-decay powered transient

- \rightarrow neutrino emission \rightarrow conditions r-process nucleosynthsis and nuclear-decay powered transient
- Nuclear models for r-process reaction rates
 - \rightarrow detailed path of the r-process and final abundance
 - \rightarrow heating by decays \rightarrow properties of em transient
- ► In turn, observables which are affected by EoS reveal properties of EoS
 - if theoretical models allow reliable connection between input and observables
- ► Note: work within B07 goes in both directions