

Status of the S-DALINAC

Photograph: Jan-Christoph Hartung

Gefördert durch die DFG im Rahmen des GRK 2128

S-DALINAC

Superconducting-DArmstadt-LINear-ACcelerator

Commissioning of New Lattice

- Modification lattice 2015/2016
- Refurbishment cryoplant 2018

- Modification lattice 2015/2016
- Refurbishment cryoplant 2018

- Modification lattice 2015/2016
- Refurbishment cryoplant 2018

- Modification lattice 2015/2016
- Refurbishment cryoplant 2018

First Thrice-Recirculating Operation

- Up to 2.5 µA with >90% transmission (100% reached for smaller beam currents)
- Beam parameters measured

publication in preparation

9

- Modification lattice 2015/2016
- Refurbishment cryoplant 2018

10

- Modification lattice 2015/2016
- Refurbishment cryoplant 2018

Test Phase Twice-Recirculating ERL

Example and Diagnostics

Diagnostics

- Beam loading cavities (first decelerated beam in A1SC07 up to ~90% recovered)
- RF monitor system
- Beam loss monitor system
- BeO targets with hole on F1
- Check of path-length adjustment system position in S on T0 (→ 180°)

Test Phase Twice-Recirculating ERL

3.85 MeV

Example and Diagnostics

 Systematic investigations on settings, phase slippage,...

15.40 MeV

 In F to S
 In F to ERL-dump (once decelerated) Diagnostics

- Beam loading cavities (first decelerated beam in A1SC07 up to ~90% recovered)
- RF monitor system
- Beam loss monitor system
- BeO targets with hole on F1
- Check of path-length adjustment system position in S on T0 (→ 180°)

Test Phase Twice-Recirculating ERL

TECHNISCHE UNIVERSITÄT DARMSTADT

Example and Diagnostics

Learned so far:

- Beam "blocked" in front of second deceleration
- Momentum deviation of centre particle
- Momentum spread increases starting with first deceleration
- Phase slippage must be controlled properly

Plans:

- Further simulations to optimize setting
- Extension of beam diagnostics
- Test will repeated during next cool-down of sLHe target
- World-wide first multi-turn
 SRF-ERL

Further Improvements for Next Beamtime

- Alignment of warm injector section, extraction beam line, DHIPS, NEPTUN, QCLAM, LINTOTT and correction of elements moved over time
- Learned: accelerator hall is "shrinking"
 by ~ 1mm/3 years
- Improvement of stability
 - Ventilation and cleanliness in gun cage
 - Piping for LN2 exhaust (no temperature drifts for SMA-cables)
 - Less vibrations on beam in warm injector section

Further Improvements for Next Beamtime

- Extension of beam diagnostics (additional targets, more beam-loss monitors,...)
- Learned a lot during first setting of thrice-recirculating operation (complete new machine!)
 → more experience and knowledge

QCLAM Sieve Slit Measurement

TECHNISCHE UNIVERSITÄT DARMSTADT

QCLAM ¹²C Measurement

QCLAM ⁴He Measurement

- Beam energy: 42.5 MeV
- Control of target thickness, no boilingbubbles due to superfluid liquid helium

NEPTUN Commissioning 2018

- Completed commissioning runs with
 68 and 65 MeV e- beams
- 1st run (August 2018) with 20% of the new focal plane detectors
- 2nd run (December 2018) with complete focal plane
- Investigated the response of large CeBr detector to high energy gamma rays
- Tagged 8125 keV 1⁺ state in ³²S;
- Performed first test of the setup for photoabsorption experiment (PROTEUS)

NEPTUN Commissioning 2018

- Completed commissioning runs with
 68 and 65 MeV e- beams
- 1st run (August 2018) with 20% of the new focal plane detectors
- 2nd run (December 2018) with complete focal plane
- Investigated the response of large CeBr detector to high energy gamma rays
- Tagged 8125 keV 1⁺ state in ³²S;
- Performed first test of the setup for photoabsorption experiment (PROTEUS)

Beam Time Schedule 2019

Leybold Pumping Stages

- Filter elements (4x14) have been replaced beginning of 2018
- ~ 8 weeks after start of operation: heavy oil loss of modules → to much oil at compressor
- Situation was controllable (refilling of oil at pumping stages, releasing of oil at compressor), contamination with oil was expected
- To ensure beam time for CRC: continuation of operation
- Information given to Leybold: August/September 2018

Leybold Pumping Stages

- Huge contamination of pipings with oil
- Causing a risky warm-up procedure in December 2018
- ~ 6 weeks of work to get rid of the oil contamination

Leybold Pumping Stages

Status

- New filter elements installed by Leybold (but the same version)
- Guess by IKP: aggressive Breox oil is destroying glue/plastic parts of filter elements
- Long-term tests at Leybold to solve problem
- Problem not fixed yet!

If dramatic oil loss occures again:

- Stop of operation to protect machine
- Use new set of filter elements (hopefully improved version)
- Clean piping if necessary (< 6 weeks due to improvements)
- Continue operation

27.03.2019 | Norbert Pietralla | TU Darmstadt | Status of the S-DALINAC

Heat Exchanger

- Most probably damaged during warm-up in Dec. 2018
- 4 leaks to insulating vacuum
- Tiny leak between high pressure and low pressure
- Very complicated to repair
- **Replacement:** delivery time of 8-9 months, 100 k€

Heat Exchanger

- 4 leaks to insulating vacuum have been closed
- Tiny leak between high pressure and low pressure is irrepairable
- Cool down to check if cryo plant is working and has enough cooling power
 - If yes: proceed
 - If no: done for the year

Thank you for your attention!

Picture: Jan-Christoph Hartung

Develo DHIPS NEPTUN 27.03.2019 | Norbert Pietralla | TU Darmstadt | Status

	LINTOTT
	Detector tests
of the S-DALINAC	3

Beam Time Schedule 2019

3 14

М

М

> D м

Ζ

<u>30</u>

D М

16	17	18	19	20	7	1	1 1	2	13	14	15	16	17	11	11	12	13	14	15	16	17	16	15	<u>16</u>	17	18	<u>19</u>	20	21	
23	24	25	26	27	8	1	.8 1	9	20	21	22	23	24	12	18	<u>19</u>	20	21	22	23	24	17	<u>22</u>	<u>23</u>	24	25	26	27	28	
30	31	1	2	3	9	2	25 2	6	27	28	1	2	3	13	25	<u>26</u>	27	28	29	30	31		29	30	1	2	3	4	5	
6	7	8	9	10			4	5	6	7	8	9	10		1	2	3	4	5	6	7		6	7	8	9	10	11	12	
	MAI JUNI														JULI AUGUST															
М	D	F	S	S		-	M	D	М	D	F	S	S		М	D	М	D	F	S	S		М	D	М	D	F	S	S	
1	2	3	4	5		2	27 2	8	29	30	31	1	2	27	1	2	3	4	5	6	7	_	29	30	31	1	2	3	4	
8	9	10	11	12	23		3	4	5	6	7	8	9	28	8	9	10	11	12	13	14	32	5	<u>6</u>	7	8	9	10	11	
15	16	17	18	19	24	1	<u>0</u> 1	1	12	13	14	15	16	29	15	<u>16</u>	17	18	19	20	21	33	12	13	14	15	16	17	18	
22	23	24	25	26	25	1	/ 1	8	19	20	21	22	23	30	22	23	24	25	26	27	28	34	19	20	21	22	23	24	25	
- 29	<u>20</u>	7	1 2	~ 0	20	2	4 <u>4</u> 1	2	20	21	5	- 29	7	51	- 29	- 20	7	2	~	10	11	22	20	3	20	- 29	50	7	8	
2	0	,	0	2			-	_	2		2	0			2	0	,	0	2	10	**		-	2		2		,	0	
		SEI	PTEN	IBER							0	кто	BER						NO	OVEMBER DEZEME									BER	
М	D	F	S	S			M	D	М	D	F	S	S		М	D	М	D	F	S	S		М	D	М	D	F	S	S	
28	29	30	31	1	40	3	10	1	2	3	4	5	6		28	29	30	31	1	2	3		25	26	27	28	29	30	1	
4					41		7	8	9	10	11	12	13	45	4	5	6	7	8	9	10	49	2	3	4	5	6	7	8	
11	12	20	21	22	42	1	.4 <u>1</u> 01 2	2	23	24	25	26	20	40	11	10	20	14 21	22	23	24	50	16	17	11	12	20	14 21	22	
25	26	27	28	22	44	2	8 2	9	30	31	1	20	3	48	25	26	27	28	29	30	1	52	23	24	25	26	27	28	29	
2	3	4	5	6			4	5	6	7	8	9	10		2	3	4	5	6	7	8		30	31	1	2	3	4	5	
к Л.	- !	+ ~	~ 10	~ ~	1	مام	ماما																							
IVI	ain	lan	an	ce	/ CO		JOV	vn	I / V	var	m-	up								J	Q-C	LAI	VEL		IId					
Τe	Tests cavities + He-refrigerator, beam tuning,												Q-CLAM He-Target																	
m	modification experiment														Q-CLAM 180°															
De	eve	lop	m	ent	acc	ele	era	to	r ⊦	⊦ e	хре	erir	ner	nts							Q-CLAM (e,e'g)									
Dł	HIP	S																		LINTOTT										
NF														Detector tests																

- Modification lattice 2015/2016
- Refurbishment cryoplant 2018

BeO target

- Test of maximum beam current: ~98 % transmission to extraction at design current for recirculating operation (20 µA) → new record
- Beam losses very small

- Modification lattice 2015/2016
- Refurbishment cryoplant 2018

Once-Recirculating ERL Operation

Physik Journal 10/2017; publication in preparation

27.03.2019 | Norbert Pietralla | TU Darmstadt | Status of the S-DALINAC

