Recent developments

in the in-medium similarity renormalization group

Matthias Heinz with Jan Hoppe, Alexander Tichai, Kai Hebeler, and Achim Schwenk March 26, 2021

Institut für Kernphysik, TU Darmstadt

Ab initio nuclear structure

Interactions:

- NN and 3N interactions
- Connection to QCD \rightarrow Chiral EFT

Many-body physics:

- Solve many-body Schrödinger equation in exact or systematically improvable manner

Ab initio promise:

- Predictive power
- Uncertainty quantification
- Systematic path to improvement

IMSRG: A conceptual overview

IMSRG evolution of Hamiltonian:

$$
H(s)=U^{\dagger}(s) H U(s)
$$

Unitary transformation generated by solving coupled differential equation

Start from reference state $|\Phi\rangle$ and normal order operators

Hergert et al., Phys. Rep. 621 (2016)

IMSRG: A conceptual overview

IMSRG evolution of Hamiltonian:

$$
H(s)=U^{\dagger}(s) H U(s)
$$

Unitary transformation generated by solving coupled differential equation

Start from reference state $|\Phi\rangle$ and normal order operators

IMSRG(2):

Hergert et al., Phys. Rep. 621 (2016)

$$
\begin{aligned}
& H(s)=E(s)+f(s)+\Gamma(s) \\
& O(s)=O^{(0)}(s)+O^{(1)}(s)+O^{(2)}(s)
\end{aligned}
$$

IMSRG(2): Strengths and successes

Stroberg, Holt, Schwenk, Simonis, PRL 126 (2021)

- Polynomial cost in basis size N $\left(\mathcal{O}\left(N^{6}\right)\right)$
- Contains all third-order diagrams
- Nonperturbative
- Can flexibly target many different quantities of interest
- Ground-state properties
- Spectroscopy
- Decay matrix elements
- Multiple variants to access open-shell systems

IMSRG: Dimensions for systematic improvement

Basis:

- Oscillator frequency: $\hbar \Omega$
- Basis truncation: $e_{\max }=(2 n+l)_{\max }$ and $E_{3 \text { max }} \geq e_{1}+e_{2}+e_{3}$
- Examples: HO, HF, natural orbitals (NAT)

Tichai, Müller, Vobig, Roth, PRC 99 (2019)
Hoppe, Tichai, MH, Hebeler, Schwenk, PRC 103 (2021)

Hergert et al., Phys. Rep. 621 (2016)

IMSRG: Dimensions for systematic improvement

Hergert et al., Phys. Rep. 621 (2016)

Basis:

- Oscillator frequency: $\hbar \Omega$
- Basis truncation: $e_{\max }=(2 n+l)_{\max }$ and $E_{3 \text { max }} \geq e_{1}+e_{2}+e_{3}$
- Examples: HO, HF, natural orbitals (NAT)

Tichai, Müller, Vobig, Roth, PRC 99 (2019)
Hoppe, Tichai, MH, Hebeler, Schwenk, PRC 103 (2021)
Many-body truncation:

- Correct for/relax many-body truncation
- IMSRG(2) \rightarrow IMSRG(3)

MH, Tichai, Hoppe, Hebeler, Schwenk, arXiv:2102.11172

Basis improvement: Natural orbitals

Hoppe, Tichai, MH, Hebeler, Schwenk, PRC 103 (2021)

Construction:

- Build density matrix in second-order perturbation theory
- Diagonalize density matrix

Properties:

- Optimizes unoccupied states
- Reduced remaining frequency dependence of basis states

Basis improvement: Natural orbitals

Hoppe, Tichai, MH, Hebeler, Schwenk, PRC 103 (2021)

Construction:

- Build density matrix in second-order perturbation theory
- Diagonalize density matrix

Properties:

- Optimizes unoccupied states
- Reduced remaining frequency dependence of basis states
- Frequency dependence of observables reduced
- Convergence behavior improved

Basis improvement: Natural orbitals Hoppe, Tichai, MH, Hebeler, Schwenk, PRC 103 (2021)

Application in IMSRG:

- Construct NAT in large model space
- Here: $e_{\max }^{\mathrm{HF} / \mathrm{NAT}}=14$
- Truncate to smaller model space for IMSRG

Results:

- Improved model space convergence
- Frequency dependence reduced

Basis improvement: Natural orbitals Hoppe, Tichai, MH, Hebeler, Schwenk, PRC 103 (2021)

Application in IMSRG:

- Construct NAT in large model space
- Here: $e_{\max }^{\mathrm{HF} / \mathrm{NAT}}=14$
- Truncate to smaller model space for IMSRG

Results:

- Improved model space convergence
- Frequency dependence reduced
- Trends extend to heavier systems

Application in IMSRG:

- Construct NAT in large model space
- Here: $e_{\max }^{\mathrm{HF} / \mathrm{NAT}}=14$
- Truncate to smaller model space for IMSRG

Results:

- Improved model space convergence
- Frequency dependence reduced
- Trends extend to heavier systems
- NAT efficiency will help converge expensive many-body calculations (IMSRG(3)!)

Why bother with IMSRG(3)?

Triples (3p3h) are important for many relevant observables and theoretical predictions:

- 2^{+}energies

Simonis, Stroberg, Hebeler, Holt, Schwenk, PRC 96 (2017)
Hagen, Jansen, Papenbrock, PRL 117 (2016)

Why bother with IMSRG(3)?

Triples (3p3h) are important for many relevant observables and theoretical predictions:

- 2^{+}energies
- Dipole polarizabilities

Kaufmann et al., PRL 124 (2020)

IMSRG(3)

Include three-body operators:

$$
\begin{aligned}
H(s) & =\ldots+W(s) \\
O(s) & =\ldots+O^{(3)}(s)
\end{aligned}
$$

- Keep track of induced three-body interactions $(W(s))$
- Can include initial residual three-body interactions
- Contains all fourth-order diagrams

IMSRG(3)

Include three-body operators:

$$
\begin{aligned}
H(s) & =\ldots+W(s) \\
O(s) & =\ldots+O^{(3)}(s)
\end{aligned}
$$

- Keep track of induced three-body
- 10 new terms in equations
- Storage cost: $\mathcal{O}\left(N^{6}\right)$
- Computational cost: $\mathcal{O}\left(N^{9}\right)$
- Only two terms are $\mathcal{O}\left(N^{8}\right)$
- Only one term is $\mathcal{O}\left(N^{9}\right)$ interactions ($W(s)$)
- Can include initial residual three-body interactions
- Contains all fourth-order diagrams

IMSRG(3)

Include three-body operators:

$$
\begin{aligned}
& H(s)=\ldots+W(s) \\
& O(s)=\ldots+O^{(3)}(s)
\end{aligned}
$$

- Keep track of induced three-body interactions $(W(s))$
- Can include initial residual three-body interactions
- Contains all fourth-order diagrams
- 10 new terms in equations
- Storage cost: $\mathcal{O}\left(N^{6}\right)$
- Computational cost: $\mathcal{O}\left(N^{9}\right)$
- Only two terms are $\mathcal{O}\left(N^{8}\right)$
- Only one term is $\mathcal{O}\left(N^{9}\right)$

Goal: Approximate IMSRG(3) at lower computational cost

Approximate IMSRG(3) truncation schemes

IMSRG(3)-MP4:

- Includes minimal terms required to be fourth-order complete

Computational organization:

- Include terms based on computational cost

Perturbative organization:

- Include terms based on perturbative importance

IMSRG(2)

IMSRG(3)-MP4

IMSRG(3)-N ${ }^{7}$

$\operatorname{lMSRG}(3)-N^{8}$

IMSRG(3)- g^{5}

IMSRG(3)

Application: Oxygen-16

General trends

- IMSRG(3) systematically improves over IMSRG(2) relative to exact results
- IMSRG(3)- N^{7} performs better than IMSRG(2) in general
- IMSRG(3)-g ${ }^{5}$ approximates IMSRG(3) very well ($\sim 0.1 \%$ error)
- Band between these two truncations contains IMSRG(3) results

Conclusions and outlook

Natural orbitals:

- Natural orbitals applied with great success to IMSRG
- Reduced frequency dependence and improved convergence observed

Outlook: NAT basis as robust new option for many-body calculations

IMSRG(3):

- First systematic study of full and approximate $\operatorname{IMSRG}(3)$ truncations performed
- Systematic improvement over IMSRG(2) relative to exact results observed

Outlook: Extend IMSRG(3) to large model spaces to study approximate truncations

Conclusions and outlook

Natural orbitals:

- Natural orbitals applied with great success to IMSRG
- Reduced frequency dependence and improved convergence observed

Outlook: NAT basis as robust new option for many-body calculations

IMSRG(3):

- First systematic study of full and approximate IMSRG(3) truncations performed
- Systematic improvement over IMSRG(2) relative to exact results observed

Outlook: Extend IMSRG(3) to large model spaces to study approximate truncations Thank you for listening!

Backup

Natural orbitals in Nickel-78

Helium-4 with harder Hamiltonians

Oxygen-16 with harder Hamiltonians

Oxygen-16 (NAT)

Helium-4 (NAT)

Applications with 3 N interactions

