

Recent developments in the in-medium similarity renormalization group

Matthias Heinz with Jan Hoppe, Alexander Tichai, Kai Hebeler, and Achim Schwenk March 26, 2021

Institut für Kernphysik, TU Darmstadt

Ab initio nuclear structure

Hergert, Front. Phys. 8 (2020)

Interactions:

- NN and 3N interactions
- Connection to QCD \rightarrow Chiral EFT

Many-body physics:

 Solve many-body Schrödinger equation in exact or systematically improvable manner

Ab initio promise:

- Predictive power
- Uncertainty quantification
- Systematic path to improvement

IMSRG: A conceptual overview

IMSRG evolution of Hamiltonian:

 $H(s) = U^{\dagger}(s)HU(s)$

Unitary transformation generated by solving coupled differential equation

Start from reference state $|\Phi\rangle$ and normal order operators

IMSRG: A conceptual overview

IMSRG evolution of Hamiltonian:

 $H(s) = U^{\dagger}(s)HU(s)$

Unitary transformation generated by solving coupled differential equation

Start from reference state $|\Phi\rangle$ and normal order operators

IMSRG(2):

$$egin{aligned} H(s) &= E(s) + f(s) + \Gamma(s) \ O(s) &= O^{(0)}(s) + O^{(1)}(s) + O^{(2)}(s) \end{aligned}$$

Hergert et al., Phys. Rep. 621 (2016)

IMSRG(2): Strengths and successes

Stroberg, Holt, Schwenk, Simonis, PRL 126 (2021)

- Polynomial cost in basis size N (O(N⁶))
- Contains all third-order diagrams
- Nonperturbative
- Can flexibly target many different quantities of interest
 - Ground-state properties
 - Spectroscopy
 - Decay matrix elements
- Multiple variants to access open-shell systems

IMSRG: Dimensions for systematic improvement

Hergert et al., Phys. Rep. 621 (2016)

Basis:

- Oscillator frequency: $\hbar\Omega$
- Basis truncation: $e_{\max} = (2n + I)_{\max}$ and $E_{3\max} \ge e_1 + e_2 + e_3$
- Examples: HO, HF, natural orbitals (NAT)

Tichai, Müller, Vobig, Roth, PRC **99** (2019) Hoppe, Tichai, MH, Hebeler, Schwenk, PRC **103** (2021)

IMSRG: Dimensions for systematic improvement

Hergert et al., Phys. Rep. 621 (2016)

Basis:

- Oscillator frequency: $\hbar\Omega$
- Basis truncation: $e_{\max} = (2n + I)_{\max}$ and $E_{3\max} \ge e_1 + e_2 + e_3$
- Examples: HO, HF, natural orbitals (NAT)

Tichai, Müller, Vobig, Roth, PRC **99** (2019) Hoppe, Tichai, MH, Hebeler, Schwenk, PRC **103** (2021)

Many-body truncation:

- Correct for/relax many-body truncation
- $IMSRG(2) \rightarrow IMSRG(3)$

MH, Tichai, Hoppe, Hebeler, Schwenk, arXiv:2102.11172

Basis improvement: Natural orbitals

Construction:

- Build density matrix in second-order perturbation theory
- Diagonalize density matrix

Properties:

- Optimizes unoccupied states
- Reduced remaining frequency dependence of basis states

Hoppe, Tichai, MH, Hebeler, Schwenk, PRC 103 (2021)

Basis improvement: Natural orbitals

Hoppe, Tichai, MH, Hebeler, Schwenk, PRC 103 (2021)

Construction:

- Build density matrix in second-order perturbation theory
- Diagonalize density matrix

Properties:

- Optimizes unoccupied states
- Reduced remaining frequency dependence of basis states
- Frequency dependence of observables reduced
- Convergence behavior improved

Application in IMSRG:

• Construct NAT in large model space

• Here:
$$e_{\max}^{\text{HF/NAT}} = 14$$

• Truncate to smaller model space for IMSRG

Results:

- Improved model space convergence
- Frequency dependence reduced

Application in IMSRG:

• Construct NAT in large model space

• Here:
$$e_{\max}^{\text{HF/NAT}} = 14$$

• Truncate to smaller model space for IMSRG

Results:

- Improved model space convergence
- Frequency dependence reduced
- Trends extend to heavier systems

Application in IMSRG:

• Construct NAT in large model space

• Here:
$$e_{\max}^{\text{HF/NAT}} = 14$$

• Truncate to smaller model space for IMSRG

Results:

- Improved model space convergence
- Frequency dependence reduced
- Trends extend to heavier systems
- NAT efficiency will help converge expensive many-body calculations (IMSRG(3)!)

Why bother with IMSRG(3)?

Triples (3p3h) are important for many relevant observables and theoretical predictions:

• 2⁺ energies

Simonis, Stroberg, Hebeler, Holt, Schwenk, PRC 96 (2017)

Hagen, Jansen, Papenbrock, PRL 117 (2016)

Why bother with IMSRG(3)?

Triples (3p3h) are important for many relevant observables and theoretical predictions:

- 2⁺ energies
- Dipole polarizabilities

Kaufmann et al., PRL 124 (2020)

IMSRG(3)

Include three-body operators:

$$H(s) = \ldots + W(s)$$
$$O(s) = \ldots + O^{(3)}(s)$$

- Keep track of induced three-body interactions (*W*(*s*))
- Can include initial residual three-body interactions
- Contains all fourth-order diagrams

IMSRG(3)

Include three-body operators:

$$H(s) = \ldots + W(s)$$

 $O(s) = \ldots + O^{(3)}(s)$

- Keep track of induced three-body interactions (*W*(*s*))
- Can include initial residual three-body interactions
- Contains all fourth-order diagrams

- 10 new terms in equations
- Storage cost: $\mathcal{O}(N^6)$
- Computational cost: $\mathcal{O}(N^9)$
 - Only two terms are $\mathcal{O}(N^8)$
 - Only one term is $\mathcal{O}(N^9)$

IMSRG(3)

Include three-body operators:

$$H(s) = \ldots + W(s)$$

 $O(s) = \ldots + O^{(3)}(s)$

- Keep track of induced three-body interactions (*W*(*s*))
- Can include initial residual three-body interactions
- Contains all fourth-order diagrams

- 10 new terms in equations
- Storage cost: $\mathcal{O}(N^6)$
- Computational cost: $\mathcal{O}(N^9)$
 - Only two terms are $\mathcal{O}(N^8)$
 - Only one term is $\mathcal{O}(N^9)$

Goal: Approximate IMSRG(3) at lower computational cost

IMSRG(3)-MP4:

• Includes minimal terms required to be fourth-order complete

Computational organization:

• Include terms based on computational cost

Perturbative organization:

• Include terms based on perturbative importance

Application: Oxygen-16

General trends

- IMSRG(3) systematically improves over IMSRG(2) relative to exact results
- IMSRG(3)-*N*⁷ performs better than IMSRG(2) in general
- IMSRG(3)-g⁵ approximates IMSRG(3) very well (~0.1% error)
- Band between these two truncations contains IMSRG(3) results

Natural orbitals:

- Natural orbitals applied with great success to IMSRG
- Reduced frequency dependence and improved convergence observed

Outlook: NAT basis as robust new option for many-body calculations

IMSRG(3):

- First systematic study of full and approximate IMSRG(3) truncations performed
- Systematic improvement over IMSRG(2) relative to exact results observed

Outlook: Extend IMSRG(3) to large model spaces to study approximate truncations

Natural orbitals:

- Natural orbitals applied with great success to IMSRG
- Reduced frequency dependence and improved convergence observed

Outlook: NAT basis as robust new option for many-body calculations

IMSRG(3):

- First systematic study of full and approximate IMSRG(3) truncations performed
- Systematic improvement over IMSRG(2) relative to exact results observed

Outlook: Extend IMSRG(3) to large model spaces to study approximate truncations

Thank you for listening!

Backup

Natural orbitals in Nickel-78

Helium-4 with harder Hamiltonians

Oxygen-16 with harder Hamiltonians

Oxygen-16 (NAT)

Helium-4 (NAT)

Applications with 3N interactions

