New equations of state constrained by nuclear physics, observations & high-density QCD calculations

TECHNISCHE UNIVERSITÄT DARMSTADT

Sabrina Huth - B01

with Corbinian Wellenhofer, Hannah Yasin, Almudena Arcones, and Achim Schwenk

March 25, 2021 | SFB virtual workshop 2021 - B01 | Sabrina Huth | 1

Equation of state for astrophysical applications

Microphysics inputs in core-collapse supernovae (CCSN) and neutron star merger (NSM) simulations are

- 1. Equation of state (EOS)
- 2. Neutrino interactions

Overall Goal: EOS and neutrino interactions for simulations consistent with each other and with nuclear physics and observations

Equation of state for astrophysical applications

Microphysics inputs in core-collapse supernovae (CCSN) and neutron star merger (NSM) simulations are

- 1. Equation of state (EOS)
- 2. Neutrino interactions

Overall Goal: EOS and neutrino interactions for simulations consistent with each other and with nuclear physics and observations

Here: New EOS functional and EOS for astro applications

Proto-neutron star (PNS) evolution

Sim: 1D with heating factor, FLASH code, M1 $\nu\text{-transport},$ 15 M_{\odot} progenitor

Fryxell et al., APJ Suppl. Ser. (2000); O'Connor, Couch, APJ (2018); Woosley et al., RMP (2002)

PNS evolution is sensitive to EOS \rightarrow Faster contraction favors explosion

Yasin, SH, Arcones, Schwenk, PRL (2020)

Proto-neutron star (PNS) evolution

Sim: 1*D* with heating factor, FLASH code, M1 ν-transport, 15 M_☉ progenitor Fryzell *et al.*, APJ Suppl. Ser. (2000); O'Connor, Couch, APJ (2018); Woosley *et al.*, RMP (2002)

PNS evolution is sensitive to EOS \rightarrow Faster contraction favors explosion

Yasin, SH, Arcones, Schwenk, PRL (2020); cf. Schneider et al., PRC (2019)

Constraints from nuclear physics

Nucleon effective mass and thermal effects

- Effective mass governs proto-neutron star contraction in CCSNe through thermal effects → Accurate implementation of *m*^{*} is crucial
- Ab initio calculations at finite temperature from chiral EFT Carbone & Schwenk, PRC (2019)
- *m*^{*} increases after saturation density due to 3N forces

 \rightarrow Need new parametrization $m^*(n, x)$

Behavior at densities above 2n₀ unknown
 → Investigate different scenarios

Starting point for building new EOS: Nuclear theory up to around saturation density

Expansion of energy per particle around n_0 and $\beta = (n_n - n_p)/n$

$$\frac{E}{A}(n,\beta) = -B + \frac{K}{18} \left(\frac{n-n_0}{n_0}\right)^2 + S(n)\beta^2 + \dots$$

Saturation density n_0 and energy B, incompressibility KSymmetry energy $E_{sym} \simeq S(n_0)$, slope $L \sim \partial_n E_{sym}|_{n_0}$

Starting point for building new EOS: Nuclear theory up to around saturation density

Expansion of energy per particle around n_0 and $\beta = (n_n - n_p)/n$

$$\frac{E}{A}(n,\beta) = -B + \frac{K}{18} \left(\frac{n-n_0}{n_0}\right)^2 + S(n)\beta^2 + \dots$$

Saturation density n_0 and energy B, incompressibility KSymmetry energy $E_{sym} \simeq S(n_0)$, slope $L \sim \partial_n E_{sym}|_{n_0}$

	Nucl. Theory	LS220	Shen
<i>n</i> ₀ [fm ⁻³]	0.164(7)	0.155	0.145
<i>B</i> [MeV]	15.86(57)	16.0	16.3
E _{sym} [MeV]	32(4)	29.6	36.9
L [MeV]	51(19)	73.7	110.8
K [MeV]	215(40)	220	281
$m^{*}/m(n_{0})$	\sim 0.9(2)	1.0	0.634

Hebeler et al., PRC (2011); Hebeler et al., APJ (2013); Drischler et al., PRC (2016, 2017); Drischler et al., PRL (2019)

March 25, 2021 | SFB virtual workshop 2021 - B01 | Sabrina Huth | 5

Energy density functional

 Construct new energy density functional depending on density, proton fraction, and temperature:

$$\frac{E}{V}(n,x,T) = \sum_{t} \frac{\tau_t}{2m_t^*} + \sum_{i} \left[\frac{a_i}{d + n^{(\delta_i - 2)/3}} + \frac{4b_i x(1-x)}{d + n^{(\delta_i - 2)/3}} \right] n^{\delta_i/3 + 1} - xn\Delta ,$$

with isospin t = (n, p)

SH, Wellenhofer, Schwenk, PRC (2021)

kinetic energy density τ nucleon effective mass m^*

- Choose δ , *d* to ensure good fit performance:
 - $\delta_{i,k_{\rm F}} = \{3, 4, 5, 6\}$ with *d* fixed to 1, 3, 5, or 7
 - $\delta_{i,n} = \{3, 6, 9, 12\}$ with *d* fixed to 0.2, 0.4, 0.6, or 0.8

Energy density functional

• Construct new energy density functional depending on density, proton fraction, and temperature:

$$\frac{E}{V}(n,x,T) = \sum_{t} \frac{\tau_t}{2m_t^*} + \sum_{i} \left[\frac{a_i}{d + n^{(\delta_i - 2)/3}} + \frac{4b_i x(1-x)}{d + n^{(\delta_i - 2)/3}} \right] n^{\delta_i/3 + 1} - xn\Delta ,$$

with isospin t = (n, p)

SH, Wellenhofer, Schwenk, PRC (2021)

kinetic energy density τ nucleon effective mass m^*

- Fit parameters *a_i*, *b_i* to reproduce available EOS constraints:
 - Nuclear matter properties: n₀, B, K, E_{sym}, L
 - Neutron matter at low density from QMC calculations Gezerlis & Carlson, PRC (2010)
 - Pressure of PNM and SNM at high densities

Constraints from nuclear physics

Zero temperature properties

Expansion of energy per particle around n_0 and $\beta = (n_n - n_p)/n$

$$\frac{E}{A}(n,\beta) = -B + \frac{K}{18} \left(\frac{n-n_0}{n_0}\right)^2 + S(n)\beta^2 + \dots$$

- Symmetric nuclear matter (SNM): Saturation density $n_0 = 0.164(7) \text{ fm}^{-3}$ Binding energy B = 15.86(57) MeVIncompressibility K = 215(40) MeVHebeler et al., PRC (2011); Drischler et al., PRC (2016) & PRL (2019) $\rightarrow 3 (n_0, B, K)$ triples to cover ranges
- Pure neutron matter (PNM): Symmetry energy $E_{sym} \simeq S(n_0)$ Slope parameter $L \sim \partial_n E_{sym}|_{n_0}$
 - ightarrow PNM uncertainty band

Variations of nuclear matter properties

 $E_{sym} - L$ correlation

- Microscopic calculations with various many-body methods:
 - H Hebeler, Schwenk, PRC (2010)
 - G Gandolfi et al., PRC (2012)
 - TK Tews, Krüger et al., PRL (2013)
 - GP-B Drischler et al., arXiv:2004.07232
- Calculations consistent with unitary gas conjecture Tews et al., APJ (2017)
- 4 *E*_{sym}, *L* pairs cover broad range of theoretical uncertainty and agree with dipole polarizability experiments (B04) SH, Wellenholer, Schwenk, PRC (2021)

Lattimer & Lim, APJ (2013); Drischler et al., PRL (2020)

March 25, 2021 | SFB virtual workshop 2021 - B01 | Sabrina Huth | 8

Variations of nuclear matter properties

Constraints from observations

Greif et al., MNRAS (2019)

Raaijmakers et al., APJ Lett. (2020)

Neutron star matter

- Restrict pressure to lie within 2σ bands of Raaijmakers *et al.*, APJ Lett. (2020)
 - \rightarrow EOS span almost entire band

Constraints from high-density QCD calculations

Leonhardt et al., PRL (2020)

- First high-density calculations for EOS of SNM based on QCD using functional Renormalization Group (fRG)
- Remarkable consistency with chiral EFT results
- Results imply maximum for speed of sound

Neutron star properties

Mass-radius relation

· Compute mass-radius relations via Tolman-Oppenheimer-Volkoff equations

 $R_{1.4M_{\odot}} = 11.1 - 13.6 \text{ km}$

- Effective mass *m*^{*} mainly determines PNS contraction!
 - \rightarrow New m^* parametrization based on *ab initio* calculations
- New EOS functional interpolates flexibly and stable between
 low and high density
- SNM: Promising consistency between different dense-matter constraints

Summary

- Effective mass *m*^{*} mainly determines PNS contraction!
 → New *m*^{*} parametrization based on *ab initio* calculations
- New EOS functional interpolates flexibly and stable between low and high density
- SNM: Promising consistency between different dense-matter constraints

Collaborators:

C. Wellenhofer, H. Yasin, A. Arcones, A. Schwenk

Thank you!

Back-up: Electron fraction

 Electron fraction for canonical neutron stars mostly satisfy

 $Y_{e,1.4M_{\odot}} \lesssim 11\%$

 \rightarrow Consistent with observations of neutron star cooling

Back-up: Maximum mass

 Maximum masses mostly consistent with boundary inferred from GW170817: M_{max} ≤ 2.3 - 2.4 M_☉

e.g., Margalit, Metzger, APJ (2017) Shibata *et al.*, PRD (2017) Rezzolla *et al.*, APJ (2018)

