Results from the ${}^{6}\text{He}(p,p\alpha)^{2}n$ reaction

TECHNISCHE UNIVERSITÄT DARMSTADT

Meytal Duer

March 24th, 2021

SFB Workshop

<u>Goal:</u> Search for a tetraneutron state (resonant / bound)

A sixty-year quest

F. M. Marques, J. Carbonell, arXiv:2102.10879 (2021)

150

 $\theta_{\rm c.m.}$ [deg.]

<u>Goal:</u> Search for a tetraneutron state (resonant / bound)

Measurement:

Quasi-free ⁸He(p, $p\alpha$)⁴n knockout at 156 AMeV

• Large momentum transfer, ~180° in c.m. system

Measured p- α elastic cross-section @ 156 MeV $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0$

<u>Goal:</u> Search for a tetraneutron state (resonant / bound)

Measurement:

Quasi-free ⁸He(p, $p\alpha$)⁴n knockout at 156 AMeV

- Large momentum transfer, ~180° in c.m. system
- ⁴*n* energy spectrum via missing-mass technique
- \rightarrow Precise measurement of charged particles (⁸He, α ,*p*)

<u>Goal:</u> Search for a tetraneutron state (resonant / bound)

Measurement:

Quasi-free ⁸He(p, $p\alpha$)⁴n knockout at 156 AMeV

- Large momentum transfer, ~180° in c.m. system
- 4*n* energy spectrum via missing-mass technique
- \rightarrow Precise measurement of charged particles (⁸He, α ,*p*)

Benchmark measurement: ${}^{6}\text{He}(p,p\alpha)^{2}n$ reaction

 \rightarrow Expected to be well described by theory

Experimental Setup

Incoming PID and Tracking

A dedicated silicon tracker

- 3 SI-detector modules with X and Y readout
- Separated by 12 cm
- 8 x 5 cm, 100 µm strips
- Distance between target and 1st detector ~ 6 mm

- Tracking before the SAMURAI magnet
- Energy-loss measurement (very different for fast p and slow α)
- \rightarrow Vertex reconstruction: minimun-distance approach

Vertex Reconstruction

* Vertex resolution of ~1 mm

Fragments Identification

* ⁸He: ~1/2 of the runs do not include TOF from HODOs

Fragments Identification

Energy-loss in silicon detectors for selected p- α

Fragments Identification

Sanity check: Extracting A/Z ratios

Fragments Momentum

Multi-Dimensional Fit

 $\mathsf{B}\rho = f(\mathsf{x}_{_{\mathsf{S}\mathsf{I}}}, \mathsf{y}_{_{\mathsf{S}\mathsf{I}}}, \mathfrak{a}_{_{\mathsf{X},\mathsf{S}\mathsf{I}}}, \mathfrak{a}_{_{\mathsf{Y},\mathsf{S}\mathsf{I}}}, \mathsf{x}_{_{\mathsf{F}\mathsf{D}\mathsf{C}2}}, \mathfrak{a}_{_{\mathsf{F}\mathsf{D}\mathsf{C}2}})$

 $B\rho = P/Z$

Validate with data: Proton beam @ 596 MeV/c

Quasi-Free ⁶He(*p*,*p*α) events

<u>
</u>

Energy-momentum conservation:

$$P_{^{6}\text{He}} + P_{\rho(\text{tgt})} = P_{\rho} + P_{\alpha} + P_{2n}$$
$$P_{miss} = P_{^{6}\text{He}} + P_{\rho(\text{tgt})} - P_{\rho} - P_{\alpha}$$

Intrinsic momentum of α:

 $E_{2n} = M_{miss} - 2m_n$

$$\boldsymbol{p}_{\text{int}} = -\boldsymbol{p}_{\text{miss}}$$

What's needed?

- E_{2n} distribution [M. Göbel]
- Intrinsic momentum of α : Gaussian with FWHM = 75 MeV/c [Chulkov et al., NPA 759 (2005)]
- Measured *p*-α cross-section [V. Comparat et al., PRC (1975)]

F1 FSI: 3-body cluster model

HEFT FSI: Model inspired by Halo Effective Field Theory

No FSI: Model inspired by Halo Effective Field Theory without taking into account *nn* FSI

1 Generate QFS ${}^{6}\text{He}(p,p\alpha)$ events

2 Run through full detector simulation

3 Smear simulated data by internal resolutions

4 Analyze same way as experimental data

1 Generate QFS ${}^{6}\text{He}(p,p\alpha)$ events

2 Run through full detector simulation

4 Analyze same way as experimental data

- **1** Generate QFS ${}^{6}\text{He}(p,p\alpha)$ events
- 2 Run through full detector simulation
- 3 Smear simulated data by internal resolutions
- 4 Analyze same way as experimental data

Missing-mass spectrum

* Normalized to the total number of measured events

Missing-mass spectrum

* Normalized to the total number of measured events

c.m. angle

p- α scattering at large c.m. angle to minimize FSI between charged particles and neutrons

Momentum separation

Counts Counts Counts 'n θ_p [deg.] θ_{α} [deg.] Opening Angle [deg.]

Angular distributions

QFS simulation (F1 FSI model)

Intrinsic momentum of a

Summary

- Good agreement for our benchmark ⁶He(*p*,*p*α)²*n* reaction: missing-mass spectrum and observed QFS kinematical characteritistics — verify calibrations and analysis procedures
- Analysis under review by the experts of the SAMURAI collaboration

 $\frac{\text{SAMURAI19 Analysis Note: Investigation of the 4}n \text{ system using}}{(p, p^4\text{He}) \text{ quasi-free scattering with a 156 AMeV }^8\text{He beam}}$

M. Duer¹ and T. Aumann¹⁻³

¹Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany ²GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany ³Helmholtz Forschungsakademie Hessen für FAIR, 64289 Darmstadt, Germany

March 11, 2021

Thank you !

'Blind' analysis for ⁸He(p,pα)⁴n

Vertex Resolution

Empty target runs

