Three-Body Corrections and Applications of the In-Medium NCSM

Tobias Mongelli

Institut für Kernphysik - Theoriezentrum

Bundesministerium für Bildung und Forschung

- family of non-local chiral NN+3N interactions up to N3LO optimized to medium mass nuclei
- In-Medium No-Core Shell Model
- applications to carbon isotopic chain including electromagnetic properties
- leading-order three-body correction to transformed operators

Family of Chiral Interactions up to N3LO

T. Hüther et al., Phys. Lett. B 808, 135651 (2020)

chiral NN interaction by Entem, Machleidt & Nosyk

- LO to N3LO
- non-local regulator
- cutoff 450, 500 & 550 MeV

supplement non-local 3N interaction at N2LO and N3LO

- non-local regulator
- cutoff 450, 500 & 550 MeV

fix c_E in few-body sector, keep c_D as parameter

- c_E fit to triton binding energy
- alternative: c_E from combined fit to ³H, ⁴He energy and radius
- explore dependence of many-body observables on c_D
- fix c_D via ¹⁶O groundstate energy

Performance in Medium-Mass Calculations

T. Hüther et al., Phys. Lett. B 808, 135651 (2020)

Natural-Orbital Basis

A. Tichai et al., Phys. Rev. C 99, 034321 (2019)

- eigenbasis of the one-body density matrix obtained from second-order MBPT calculation
- optimization of all single-particle states due to inclusion of correlated ground-state

In-Medium No-Core Shell Model

NCSM calculation in small model space defines reference state

$$|\Psi_{\text{ref}}\rangle = \sum_{i} c_{i} |\Phi_{i}\rangle$$

In-Medium No-Core Shell Model

$$\frac{d}{ds}\hat{\Omega}(s) = \sum_{k=0}^{\infty} \frac{B_k}{k!} \left[\hat{\Omega}(s), \hat{\eta}(s)\right]_k, \quad \hat{O}(s) = \sum_{k=0}^{\infty} \frac{1}{k!} \left[\hat{\Omega}(s), \hat{O}(0)\right]_k$$

In-Medium No-Core Shell Model

- ab initio calculations with quantified truncation uncertainties
- direct calculations for all J = 0 nuclei
- odd isotopes accessible using a particle attached particle removed scheme
- excitation spectrum comes automatically with the diagonalization
- access to all observables known in the NCSM
- electromagnetic observables possible via BCH series
- orders of magnitude more efficient than standard NCSM

^{12}C - N_{max} Convergence

A. D'Alessio, TM, et al., Phys. Rev. C 102, 011302(R) (2020)

- spectrum, B(E2) transition strength and quadrupole moment vs. N_{max}
- error bars indicate many-body uncertainties
- very good agreement with experiment

¹²C - Order-by-Order Convergence

A. D'Alessio, TM, et al., Phys. Rev. C 102, 011302(R) (2020)

- spectrum, B(E2) transition strength and quadrupole moment vs. interaction order
- error bars indicate many-body uncertainties, error bands interaction uncertainties
- very good agreement with experiment regarding combined many-body and interaction uncertainties

¹²C - B(E2) vs. Q Correlation

9 8 Old exp. result $B(E2, 2_1^+ \to 0_1^+) [e^2 fm^4]$ o DALINAC pre 450 MeV/c 500 MeV/c 5 550 MeV/c N³LO N²LO 0 8 10 $Q(2_1^+)$ [e fm²] IM-NCSM, natural orbitals, ħΩ=20 MeV, $\alpha = 0.04 \text{ fm}^4$, $e_{max} = 12$, $E_{3max} = 14$, combined many-body and interaction error bars

A. D'Alessio, TM, *et al.*, Phys. Rev. C 102, 011302(R) (2020) A. Calci, R. Roth, Phys. Rev. C 94, 014322 (2016)

- correlation between B(E2) and quadrupole moment
- combined uncertainties
- strong correlation behaviour
- quadrupole moment from Bohr Mottelson fit $Q(2^+) = (5.97 \pm 0.30) \text{ efm}^2$

Carbon Isotopes: Spectra

Carbon Isotopes: Charge Radii

Carbon Isotopes: $B(E2, 2_1^+ \rightarrow 0_1^+)$

 B(E2) transition strengths for even carbon isotopes against chiral interaction order

red:
$$N_{\text{max}}^{\text{ref}} = 0$$
, blue: $N_{\text{max}}^{\text{ref}} = 2$

 good agreement for all isotopes compared to experimental values except for ¹⁶C

Carbon Isotopic Chain

- ground state energy, first excited state, B(E2) transition strength, quadrupole moments and charge radii as function of A
- combined many-body and interaction uncertainties
- all observables → good agreement with experiments except R_{ch} for ¹²C and B(E2)for ¹⁶C

¹⁶C - Hierarchy Inversion

- first excited state, B(E2) transition strength and electric quadrupole moment against the flow parameter s
- induced two-body contributions larger than one-body contribution for B(E2) transition strength
- what about three-body contributions?

IM-NCSM: Induced Three-Body Corrections

- IM-SRG flow equation yields $\hat{\Omega}^{[0]}$, $\hat{\Omega}^{[1]}$ and $\hat{\Omega}^{[2]}$
- transformation of operators via BCH series using 2B operators only

$$\hat{O}(s) = \left[\hat{\Omega}(s), \hat{O}(0)\right] + \frac{1}{2} \left[\hat{\Omega}(s), \left[\hat{\Omega}(s), \hat{O}(0)\right]\right] + \frac{1}{6} \left[\hat{\Omega}(s), \left[\hat{\Omega}(s), \left[\hat{\Omega}(s), \hat{O}(0)\right]\right]\right] + \dots$$

Leading-order three-body correction (LOTC): include intermediate 3B terms

$$\begin{split} \Delta \hat{O}^{\text{LOTC}} = &+ \frac{1}{2} \left[\hat{\Omega}^{[1]}, \left[\hat{\Omega}^{[2]}, \hat{O}^{[2]} \right]_{3B} \right]_{1B} + \frac{1}{2} \left[\hat{\Omega}^{[1]}, \left[\hat{\Omega}^{[2]}, \hat{O}^{[2]} \right]_{3B} \right]_{2B} \\ &+ \frac{1}{2} \left[\hat{\Omega}^{[2]}, \left[\hat{\Omega}^{[2]}, \hat{O}^{[2]} \right]_{3B} \right]_{0B} + \frac{1}{2} \left[\hat{\Omega}^{[2]}, \left[\hat{\Omega}^{[2]}, \hat{O}^{[2]} \right]_{3B} \right]_{1B} \\ &+ \frac{1}{2} \left[\hat{\Omega}^{[2]}, \left[\hat{\Omega}^{[2]}, \hat{O}^{[2]} \right]_{3B} \right]_{2B} \end{split}$$

Results: Induced Three-Body Corrections

- interaction family performs well for carbon isotopic chain
- electromagnetic observables well reproduced except for ¹⁶C
- three-body correction → influence not very large for small model space sizes
- compute oxygen, neon, fluorine and calcium chain
- use other cutoffs and interaction families (LENPIC collaboration)
- develop a hybrid MPI/OpenMP parallelization for the LOTC to be able to use larger model spaces