The (p, 3p) **reaction mechanism** in neutron-rich medium-mass nuclei SFB 2021 Workshop - Project A08

Axel Frotscher, IKP TU Darmstadt SEASTAR14,15 Collaboration

TECHNISCHE

UNIVERSITÄT DARMSTADT

24.03.21 | IKP TU Darmstadt | A. Frotscher - AG Obertelli | 1

Shell evolution

- Shell model used to describe nuclear structure
- Shell evolution driven by single-particle energies and correlations
- SP states vs. correlations \rightsquigarrow intruder states, islands of inversion
- Example: ³²Mg (0⁺₂ 0p-0h vs. 0⁺₁ 2p-2h state)

N = 20 Island of inversion. Adapted from Butler *et al.* J. Phys. G 44.4 2017

From PhD-Thesis N. Paul (2019)

(p,3p) selectivity

Taniuchi et al. Nature 569 7754 (2019)

- Wimmer *et al.* PRL **109**, 202505 (2012)
- 140 MeV/u ⁴⁰Ar on ⁹Be @ NSCL
- \rightarrow 56(12) % pair knockout
- access to momentum distribution of p-p pairs?
- reaction mechanism needs clarification

SEASTAR - Campaigns

- SEASTAR = Shell evolution and search for two-plus energies at the RIBF
- measurement campaign at RIBF in RIKEN, Japan
- Goals of this work:
 - **•** (p, 2p) & (p, 3p) reaction cross sections
 - understanding (p, 3p) reaction mechanism (single vs multistep process)
- two campaigns: 2014, 2015
- Mass range 65-114, chosen for spectroscopy, tuned to (p,2p)

Adapted from Sóti et al. EPJ 5 (2019) p.6

Setup

- ²³⁸U @ 12(S1) 35(S2) pnA @ 345 MeV/u
- BigRIPS + ZeroDegree spectrometers
- Settings:
 - $({}^{66}Cr, {}^{70}Fe, {}^{78}Ni)_1$
 - (¹¹⁰Nb, ⁸⁸Ge, ⁹⁴Se, ¹⁰⁰Kr)₂
- LH₂-target with surrounding TPC (MINOS) and γ-Arrays
- large coverage for three protons (TPC)

Overview of RIBF, N. Fukuda (2013) NIM 317, 323-332

PID generation & reaction determination

- for (p,2p) and (p,3p) reactions PID is needed in front (F3-F7) and after (F8-F11) the LH₂-Target
- select reaction by cutting out particle blob

- mainly unreacted beam
- (p,2p) and (p,3p) well separated
- charge state problematic (subtracted)

24.03.21 | IKP TU Darmstadt | A. Frotscher - AG Obertelli | 7

cross sections and cross section ratios

- (*p*, 2*p*) cross sections flat, agree with N. Paul *et al.* PRL **122**, 162503
- (*p*, 3*p*) cross sections in expected region (≈ 0.1 *mb*)
- ΔC = evaporation cost asymmetry $\Delta C = S_{p} + V_{C} - S_{n}$
- σ_(p,3p)/σ_(p,2p), (k = 1) is reproduced well in cascade process

Previous data: L. Audirac et al. PRC 88, 041602(R) (2013) and references therein.

(p,3p) exclusive measurement

- exclusive 3D measurements with MINOS
- reaction identification with ZDS
- 51% 2 track efficiency for (*p*,2*p*)
- 21% 3 track efficiency for (*p*,3*p*)
- event defined by: θ , λ , φ

(p, 3p) event observed in ⁹⁰Se.

- (*p*, 3*p*) events identified via BigRIPS/ZeroDegree
- two consecutive (p, 2p) events \rightarrow same signature
- Solution: Vertex Proximity Cut (10 mm)

(p, 3p) reaction mechanism models

- three kinematical models developed by M. Gómez (AvH fellow 2019-2021)
- classical, relativistic
- isotropic collisions in CoM
- parameters fit to corresponding (p, 2p) channel
 - intrinsic momentum of participating protons
 - cutoff energy (exiting the nucleus)
 - deflection (on potential well of nucleus)

(p, 3p) proton-distribution

- 81 Ga(*p*, 3*p*) is mainly sequential
- pair breakup and knockout model fail miserably
- distributions normalised to data
- error envelopes from different parameter sets

⁸¹Ga(p, 3p). θ -distribution and different models.

Conclusions and perspective

- twenty-one cross section ratios \sim cascade process (sequential)
- Exclusive angular distribution measurements for ⁸¹Ga(p, 3p), ⁶⁹Co(p, 3p) and ⁷⁰Ni(p, 3p)
 - only possible using MINOS
- three classical, relativistic, parameter-free models developed by M. Gómez
 - quantification through χ^2 -minimisation
 - sequential part $\geq 80\%$
- cross section and nature of (*p*, 3*p*) reactions published: A.F. *et al.* PRL**125**, 012501 (2020)
- (*p*, 3*p*) mechanism for medium-mass neutron-rich isotopes at high energies is **sequential**
- Exclusive cross section data from SEASTAR3 (T. Pohl [A03] et al.)
- Microscopic description of (*p*,3*p*) (M. Gómez, in preparation)
- foundation for physics program of A08

thank you!

TU Darmstadt: M. Gómez, Y. Kubota, H. Liu, A. Obertelli, Y. Sun

SEASTAR collaboration:

L. Achouri, O. Aktas, G. de Angelis, N. Aoi, T. Aumann, H. Baba, F. Brown, D. Calvet, S. Chen, N. Chiga, L. Chung, M.L. Cortes, A. Corsi, F. Delaunav, A. Delbart, Z. Dombradi, P. Doornenbal, F. Flavigny, S. Franchoo, I. Gasparic, R.-B. Gerst, J.-M. Gheller, J. Gibelin, A. Gillibert, S. Go, M. Gorska, A. Gottardo, K. Hahn, C. Hilaire, A. Jungclaus, D. Kim, N. Kobayashi, T. Kobayashi, T. Koiwai, Y. Kondo, W. Korten, P. Koseglou, Y. Kubota, V. Lapoux, J. Lee, B.D. Linh, H. Liu, T. Lokotko, G. Lorusso, C. Louchart, R. Lozeva, M. Margues, M. Mc Cormick, K. Matsui, Y. Matsuda, M. Matsushita, S. Michimasa, T. Mivazaki, S. Momivama, K. Moschner, I. Murray, D. Napoli, F. Nagvi, M. Niikura, A. Obertelli, N. Orr, S. Ota, H. Otsu, V. Panin, S.-Y. Park, N. Paul, N. Pietralla, Z. Podolyak, E.C. Pollacco, G. Randisi, F. Recchia, W. Rodriguez, E. Sahin, M. Sasano, Y. Shiga, Y. Shimuzu, P.-A. Soderstrom, D. Sohler, I. Stefan, D. Steppenbeck, L. Stuhl, Y. Sun, M. Tanaka, R. Taniuchi, S. Takeuchi, Y. Togano, V. Vaquero, H. Wang, S. Wang, V. Werner, K. Wimmer, Z. Xu, H. Yamada, D. Yan, M. Yasuda, K. Yoneda, Y. Zaihong

reaction model parameters

- the intrinsic momentum $p_{nuc} = 200 \text{ MeV/c}$
- cutoff energy $E_{\text{thresh}} = 30 \text{ MeV}$
- deflection $p_{def} = 18 \text{ MeV/c}$
- parameters fixed on corresponding (*p*, 2*p*) channel
- not linearily independent
- χ^2 minimisation on 3D parameter space

⁸¹Ga(p, 2p). λ -distribution and fitted parameters.

1D φ , θ , λ distributions

- ⁸¹Ga(p, 3p) is mainly sequential
- pair breakup and knockout model fail miserably
- distributions normalised to data
- error envelopes from different parameter sets

Results

Reaction	Model	p[%]	<i>p</i> _[%]	<i>p</i> ₊ [%]
⁶⁹ Co	sequential	100	76	100
	pair knockout	0	0	24
	pair breakup	0	0	6
⁷⁰ Ni	sequential	82	66	100
	pair knockout	17	0	31
	pair breakup	1	0	7
⁸¹ Ga	sequential	86	80	96
	pair knockout	14	4	21
	pair breakup	0	0	2

