SFB workshop: project A05

nn scattering length from the ⁶He(p, pα)nn reaction

Matthias Göbel Institut für Kernphysik Technische Universität Darmstadt

March 24, 2021

March 24, 2021 | Institut für Kernphysik | AG Hammer | M. Göbel | 1

SFB workshop: project A05

Theory for obtaining the nn scattering length from the ${}^{6}\text{He}(p, p\alpha)nn$ reaction

March 24, 2021 | Institut für Kernphysik | AG Hammer | M. Göbel | 2

project A05 and ${}^{6}\text{He}(p, p\alpha)nn$

project A05: Halos and clustering in nuclei

- explore cluster degrees of freedom of exotic nuclei & few-neutron systems
- use reactions with radioactive beams and (halo) effective field theory

project A05 and ⁶He(p, $p\alpha$)nn

project A05: Halos and clustering in nuclei

- explore cluster degrees of freedom of exotic nuclei & few-neutron systems
- use reactions with radioactive beams and (halo) effective field theory

nn scattering length from ${}^{6}\text{He}(p, p\alpha)nn$

- exploit the experimental and theoretical tools in this field to measure the *nn* scattering length
- experiment: reaction in inverse kinematics
 - will be conducted by Aumann & SAMURAI collaboration @ RIKEN RIBF
 - Marco Knösel works on detector design & data analysis
- theory: describe reaction in Halo EFT

TECHNISCHE UNIVERSITÄT DARMSTADT

Motivation & approach

Halo EFT for ⁶He

Benchmarking the ground-state spectrum

Reaction theory for ${}^{6}\text{He}(p, p\alpha)nn$

Results for the E_{nn} spectrum

Conclusion & Outlook

• motivation: no high-precision value for nn scattering length available

motivation: no high-precision value for *nn* scattering length available

→ use the reaction 6 He($p, p\alpha$)nn to determine the scattering length from the final E_{nn} spectrum

motivation: no high-precision value for *nn* scattering length available

- → use the reaction ${}^{6}\text{He}(p, p\alpha)nn$ to determine the scattering length from the final E_{nn} spectrum
 - advantages of this approach
 - different from the previous methods → not the same difficulties
 - final nn pair has high center-of-mass velocity in the lab system → avoids problems with detection efficiency

motivation: no high-precision value for *nn* scattering length available

- → use the reaction ${}^{6}\text{He}(p, p\alpha)nn$ to determine the scattering length from the final E_{nn} spectrum
 - advantages of this approach
 - different from the previous methods → not the same difficulties
 - final nn pair has high center-of-mass velocity in the lab system → avoids problems with detection efficiency
 - experiment proposal from Aumann & SAMURAI collaboration approved by RIKEN RIBF NP2012-SAMURAI55R1 (2020)

Obtaining the E_{nn} spectrum of ⁶He

approach: ⁶He in Halo EFT

- 1. calculate wave function $\Psi_c(p, q)$ (& do comparisons with model calc.)
- 2. take final state interaction (FSI) into account
- 3. calculate the probability distribution for E_{nn}

Obtaining the E_{nn} spectrum of ⁶He

approach: ⁶He in Halo EFT

- 1. calculate wave function $\Psi_c(p,q)$ (& do comparisons with model calc.)
- 2. take final state interaction (FSI) into account
- 3. calculate the probability distribution for Enn

tool: Halo EFT

- □ #EFT
- core & valence nucleons as degrees of freedom
- results are expanded in k/M_{hi}
 - → systematic improvement possible

Obtaining the E_{nn} spectrum of ⁶He

approach: ⁶He in Halo EFT

- 1. calculate wave function $\Psi_c(p,q)$ (& do comparisons with model calc.)
- 2. take final state interaction (FSI) into account
- 3. calculate the probability distribution for Enn

tool: Halo EFT

- □ #EFT
- core & valence nucleons as degrees of freedom
- results are expanded in k/M_{hi}
 - → systematic improvement possible

properties of ⁶He

- Borromean 2n halo
- separation of scales: $S_{2n} = 0.975 \text{ MeV} < E_{\alpha}^* \approx 20 \text{ MeV}$
- quantum numbers: $J^{\pi} = 0^+$ (⁴He: $J^{\pi} = 0^+$)
- leading-order (LO) Halo EFT interaction channels:
 - nn: ¹S₀
 - nc: ²P_{3/2} (not at LO: ²P_{1/2}, ²S_{1/2})

Halo EFT for ⁶He formulated in Ji, Elster, Phillips, PRC 90 (2014) review of Halo EFT in Hammer, Ji, Phillips, JPG 44 (2017)

Outline

TECHNISCHE UNIVERSITÄT DARMSTADT

Motivation & approach

Halo EFT for ⁶He

Benchmarking the ground-state spectrum

Reaction theory for 6 He($p, p\alpha$)nn

Results for the Enn spectrum

Conclusion & Outlook

Faddeev equations

use EFT in dimer formalism

2. step: set up equations for Faddeev transition amplitudes

Calculation of wave functions & probability densities

TECHNISC UNIVERSIT DARMSTA

obtain wave functions by multiplying amplitudes with propagators

Calculation of wave functions & probability densities

obtain wave functions by multiplying amplitudes with propagators

TECHNIS

Results for the wave function

calculated ground-state wave functions and probability densities in Halo EFT

TECHNISCHE UNIVERSITÄT DARMSTADT

Halo EFT for ⁶He

Benchmarking the ground-state spectrum

Reaction theory for 6 He(p, p α)nn

Results for the Enn spectrum

Conclusion & Outlook

Compare ground-state distribution from EFT with model calculations

- compare ground-state distributions $p(p_{nn}) \approx \int dq q^2 |\Psi_c(p_{nn},q)|^2$
- \nexists published results for $\rho(p_{nn})$
- → USE FaCE Thompson, Nunes, Danilin, Comput.Phys.Commun. 161 (2004)

Compare ground-state distribution from EFT with model calculations

- compare ground-state distributions $\rho(p_{nn}) \approx \int dq q^2 |\Psi_c(p_{nn}, q)|^2$
- \nexists published results for $\rho(p_{nn})$
- USE FaCE Thompson, Nunes, Danilin, Comput. Phys. Commun. 161 (2004)

computer code: Faddeev with Core Excitations (FaCE)

- solves the Schrödinger equation of three-body cluster models
- input:
 - local *l*-dependent two-body potentials (central or spin-orbit)
 phenomenological three-body force
- output: hyperspherical wave function components $\chi^{S}_{K,l}(\rho)$ with $\rho^2 = x^2 + y^2$

Compare ground-state distribution from EFT with model calculations: defining the model

UNIVERSITÄT DARMSTADT

the two-body potentials in use

use local, *l*-dependent Gaussian potentials

- = central pot.: $\langle r; l, s | V_c^{(\tilde{l})} | r'; l', s' \rangle \coloneqq \delta_{l,l'} \delta_{l,\tilde{l}} \frac{\delta(r'-r)}{r'^2} \bar{V}_c^{(l)} \exp\left(-r^2 / \left(a_{c;l}^2\right)\right)$
- spin-orbit pot.

"standard setting": local Gaussian model 1 (LGM1)

- *nn* interaction: $V_c^{(0)}$
- *nc* interaction: $V_c^{(0)}$, $V_c^{(1)}$, $V_{SO}^{(1)}$, $V_c^{(2)}$, $V_{SO}^{(2)}$
- phenomenological three-body force

Compare ground-state distribution from EFT with model calculations: Results I

Göbel, Aumann, Bertulani, Frederico, Hammer, Phillips, arXiv:2103.03224 (2021)

- model calc. within uncertainty band of EFT
- especially for small p_{nn} agreement is good
- → investigate sources of discrepancies by doing additional model calculations

Compare ground-state distribution from EFT with model calculations: Results II

TECHNISCHE UNIVERSITÄT DARMSTADT

additional model calculations

- LGM2: same as LGM1, but nc int. only in ²P_{3/2}
- LGM3: same as LGM2, but no three-body force

Compare ground-state distribution from EFT with model calculations: Results II

TECHNISCHE UNIVERSITÄT DARMSTADT

additional model calculations

- LGM2: same as LGM1, but nc int. only in ²P_{3/2}
- LGM3: same as LGM2, but no three-body force

Compare ground-state distribution from EFT with model calculations: Results II

conclusions so far

- additional nc int. channels are important
- three-body force important for obtaining the correct S_{2n}
- range of three-body force with tuned strength not so important

Compare ground-state distribution from EFT with model calculations: Results III

additional model calculations II

- turn three-body Halo EFT calc. into model calc. by using different t
- use t with Yamaguchi form factors → good phase shifts

Compare ground-state distribution from EFT with model calculations: Results III

additional model calculations II

- turn three-body Halo EFT calc. into model calc. by using different t
- use t with Yamaguchi form factors → good phase shifts

Compare ground-state distribution from EFT with model calculations: Results III

conclusions

- nc int. accounts for most of the discrepancies between LO EFT and model calc.
- especially the unitarity term is important

Halo EFT for ⁶He

Benchmarking the ground-state spectrum

Reaction theory for ${}^{6}\text{He}(p, p\alpha)nn$

Results for the Enn spectrum

Conclusion & Outlook

- ⁶He($p, p\alpha$)nn is a knock-out reaction, in which the α core of ⁶He is removed by a p
- initial state: ⁶He bound state $|\Psi\rangle$

$$\left(K_{nn}+K_{c(nn)}+V_{nn}+V_{nc}+V_{3B}\right)\left|\Psi\right\rangle =-B_{3}\left|\Psi\right\rangle$$

■ **final state:** $|p,q\rangle_c$ all particles are free (state of definite momentum!) $(K_{nn} + K_{c(nn)})|p,q\rangle_c = (-B_3 + E_{KO})|p,q\rangle_c$

- ⁶He($p, p\alpha$)nn is a knock-out reaction, in which the α core of ⁶He is removed by a p
- initial state: ⁶He bound state $|\Psi\rangle$

$$K_{nn}+K_{c(nn)}+V_{nn}+V_{nc}+V_{3B}\big)\left|\Psi\right\rangle =-B_{3}\left|\Psi\right\rangle$$

- **final state:** $|p,q\rangle_c$ all particles are free (state of definite momentum!) $(K_{nn} + K_{c(nn)})|p,q\rangle_c = (-B_3 + E_{KO})|p,q\rangle_c$
- knock-out can be described by an operator or via V_{pc} (→ include p in the initial & final state)

- ⁶He(p, $p\alpha$)nn is a knock-out reaction, in which the α core of ⁶He is removed by a p
- initial state: ⁶He bound state $|\Psi\rangle$

$$K_{nn}+K_{c(nn)}+V_{nn}+V_{nc}+V_{3B}\big)\left|\Psi\right\rangle =-B_{3}\left|\Psi\right\rangle$$

- **final state:** $|p,q\rangle_c$ all particles are free (state of definite momentum!) $(K_{nn} + K_{c(nn)})|p,q\rangle_c = (-B_3 + E_{KO})|p,q\rangle_c$
- knock-out can be described by an operator or via V_{pc} (→ include *p* in the initial & final state)

final state interactions (FSIs)

definition: interactions which are not responsible for the transition but change the final state

- ⁶He(p, $p\alpha$)nn is a knock-out reaction, in which the α core of ⁶He is removed by a p
- initial state: ⁶He bound state |Ψ)

$$\left(K_{nn}+K_{c(nn)}+V_{nn}+V_{nc}+V_{3B}\right)\left|\Psi\right\rangle=-B_{3}\left|\Psi\right\rangle$$

- **inal state:** $|p,q\rangle_c$ all particles are free (state of definite momentum!) $(K_{nn} + K_{c(nn)}) |p,q\rangle_c = (-B_3 + E_{KO}) |p,q\rangle_c$
- knock-out can be described by an operator or via V_{pc} (→ include p in the initial & final state)

final state interactions (FSIs)

- definition: interactions which are not responsible for the transition but change the final state
- = 3 multiple FSIs in ⁶He($p, p\alpha$)nn: $V_{nn}, V_{nc}, V_{np}, V_{3B}$, etc.

- ⁶He(p, $p\alpha$)nn is a knock-out reaction, in which the α core of ⁶He is removed by a p
- initial state: ⁶He bound state |Ψ)

$$\left(K_{nn}+K_{c(nn)}+V_{nn}+V_{nc}+V_{3B}\right)\left|\Psi\right\rangle=-B_{3}\left|\Psi\right\rangle$$

- **inal state:** $|p,q\rangle_c$ all particles are free (state of definite momentum!) $(K_{nn} + K_{c(nn)}) |p,q\rangle_c = (-B_3 + E_{KO}) |p,q\rangle_c$
- knock-out can be described by an operator or via V_{pc} (→ include p in the initial & final state)

final state interactions (FSIs)

- definition: interactions which are not responsible for the transition but change the final state
- = \exists multiple FSIs in ⁶He(p, p α)nn: V_{nn} , V_{nc} , V_{np} , V_{3B} , etc.

Calculating the wave function after FSI

TECHNISCHE UNIVERSITÄT DARMSTADT

treatments of FSI are based on two-potential scattering theory

Goldberger, Watson, "Collision Theory" (1964)

- two approaches are available:
 - approximation by using FSI enhancement factors
 - exact calculation

Calculating the wave function after FSI

treatments of FSI are based on two-potential scattering theory

Goldberger, Watson, "Collision Theory" (1964)

- two approaches are available:
 - approximation by using FSI enhancement factors
 - exact calculation
- exact calculation is based on t_{nn}

Outline

TECHNISCHE UNIVERSITÄT DARMSTADT

Motivation & approach

Halo EFT for ⁶He

Benchmarking the ground-state spectrum

Reaction theory for 6 He($p, p\alpha$)nn

Results for the Enn spectrum

Conclusion & Outlook

Enn spectrum before and after FSI

TECHNISCHE UNIVERSITÄT DARMSTADT

obtain distribution by using $\rho^{(t)}(p) = \int dq \ p^2 q^2 \left| \Psi_c^{(\text{wFSI})}(p,q) \right|^2$ variation of a_{nn} : $a_{nn}^{(-)} = -20.7 \text{ fm}$, $a_{nn}^{(0)} = -18.7 \text{ fm}$, $a_{nn}^{(+)} = -16.7 \text{ fm}$

Enn spectrum before and after FSI

obtain distribution by using $\rho^{(t)}(p) = \int dq \, p^2 q^2 \left| \Psi_c^{(wFSI)}(p,q) \right|^2$

variation of a_{nn} : $a_{nn}^{(-)} = -20.7$ fm, $a_{nn}^{(0)} = -18.7$ fm, $a_{nn}^{(+)} = -16.7$ fm

Göbel, Aumann, Bertulani, Frederico, Hammer, Phillips, arXiv:2103.03224 (2021)

Enn spectrum before and after FSI

obtain distribution by using $\rho^{(t)}(p) = \int dq p^2 q^2 \left| \Psi_c^{(wFSI)}(p,q) \right|^2$

variation of a_{nn} : $a_{nn}^{(-)} = -20.7$ fm, $a_{nn}^{(0)} = -18.7$ fm, $a_{nn}^{(+)} = -16.7$ fm

conclusions

- significant sensitivity on *nn* scattering length
- sensitivity almost entirely caused by FSI → ⁶He is simply a suitable neutron source (nevertheless, ⁶He wave function is an important ingredient)

Sensitivity of the E_{nn} spectrum on effective range

variation of r_{nn} : $r_{nn}^{(-)}$ = 2.0 fm, $r_{nn}^{(0)}$ = 2.73 fm, $r_{nn}^{(+)}$ = 3.0 fm

conclusions

- significant sensitivity on nn scattering length
- almost no sensitivity on nn effective range

Outline

TECHNISCHE UNIVERSITÄT DARMSTADT

Motivation & approach

Halo EFT for ⁶He

Benchmarking the ground-state spectrum

Reaction theory for 6 He($p, p\alpha$)nn

Results for the Enn spectrum

Conclusion & Outlook

Conclusion & Outlook

conclusion

- successful calculation of final Enn spectrum by using Halo EFT
 - compared ground-state Halo EFT result to model calculations
 - agreement within the uncertainty band
 - identified important NLO corrections
 - used two-potential scattering theory for calculating FSI effects
- *E_{nn}* spectrum is sensitive to the *nn* scattering length
- E_{nn} spectrum is almost insensitive to the nn effective range

Conclusion & Outlook

conclusion

- successful calculation of final E_{nn} spectrum by using Halo EFT
 - compared ground-state Halo EFT result to model calculations
 - agreement within the uncertainty band
 - identified important NLO corrections
 - used two-potential scattering theory for calculating FSI effects
- *E_{nn}* spectrum is sensitive to the *nn* scattering length
- *E_{nn}* spectrum is almost insensitive to the *nn* effective range

outlook

- formulate an EFT for the reaction
- go to NLO

Conclusion & Outlook

conclusion

- successful calculation of final E_{nn} spectrum by using Halo EFT
 - compared ground-state Halo EFT result to model calculations
 - agreement within the uncertainty band
 - identified important NLO corrections
 - used two-potential scattering theory for calculating FSI effects
- *E_{nn}* spectrum is sensitive to the *nn* scattering length
- *E_{nn}* spectrum is almost insensitive to the *nn* effective range

outlook

- formulate an EFT for the reaction
- go to NLO

Thank you for your attention!

