Postmerger GW emission and collapse behavior of NS mergers

TECHNISCHE UNIVERSITÄT DARMSTADT

Sebastian Blacker Project B07

Neutron star merger

- GWs carry away energy and angular momentum
 - \bullet Orbits decrease and NS will eventually merge

Merger snapshots Blacker et al., PRD 102, 123023 (2020)

Late inspiral

Tidal effects Λ

Merger snapshots Blacker et al., PRD 102, 123023 (2020)

Early postmerger

Late postmerger

GW from neutron star mergers

SFB 1245

- 3 phases:
 - Inspiral: EoS constraints via tidal effects
 - Merger: EoS constraints via collapse behaviour
 - **Postmerger:** EoS constraints via remnant oscillations

GW spectra

• The remnant is (temporarily) stable and oscillates

Constraining a strong phase transition

Bauswein et al., PRL **122**, 061102 (2019) Blacker et al., PRD **102**, 123023 (2020)

Burns 2020, arXiv:1909.06085

Phase diagram of matter

SFB 1245

• QCD predicts a phase transition from hadronic to deconfined quark matter, but at which density?

More Snapshots Blacker et al., PRD 102, 123023 (2020)

Inspiral

Early postmerger

Late postmerger

Impact of 1st order phase transition

See Fischer et al. Nature Astronomy **2**, 980-986 (2018), Bastian, PRD **103**, 023001 (2021) and references therein for underlying EOS model

High densities (frequencies) alone not unambiguous signature of a phase transition!

➡ Need behaviour different from all hadronic EoS

TECHNISCHE UNIVERSITÄT

DARMSTADT

Impact of 1st order phase transition Bauswein et al., PRL 122, 061102 (2019)

SFB 1245

• If the transitions happens during the merger:

Inspiral signal will behave 'hadronicly', while postmerger signal carries imprint of quark matter!!

Can we constrain the onset density? Blacker et al., PRD 102, 123023 (2020)

Use empirical relations to constrain the onset density of a possible phase transition
Blacker et al., PRD 102, 123023 (2020)

Is there a deviation?

Which densities are present?

TECHNISCHE UNIVERSITÄT

DARMSTADT

Can we constrain the onset density? Blacker et al., PRD 102, 123023 (2020)

no sign of PT

TECHNISCHE UNIVERSITÄT

DARMSTADT

Example GW170817:

- No PT: Onset density > 0.746 x 10¹⁵ g/cm³ (~2.76 x nuc. sat.)
- Clear PT: Onset density < 1.230 x 10¹⁵ g/cm³ (~4.56 x nuc. sat.)

See also Lioutas et al. 2021 (arXiv:2102.12455) for updated relations

Systematics of direct BH formation in NS mergers

Bauswein et al., PRL **125**, 141103 (2020) Bauswein et al., arXiv:2010.04461 (2020), submitted to PRD

Burns 2020, arXiv:1909.06085

Threshold mass for prompt BH formation

- Direct BH formation
 - No postmerger density oscillations (measurable!)

Relations for M_{thres} Bauswein et al., arXiv:2010.04461 (2020)

• Tight expressions (fixed mass ratio q)

Measurement of M_{thres} provides additional constraints on neutron star properties

Example GW170817 : R_{1.6} > 10.56 km

A new signature of a phase transition Bauswein et al., arXiv:2010.04461 (2020)

PT can lower M_{thres} compared to the corresponding tidal deformability. But exclusion of quarks not possible!

TECHNISCHE UNIVERSITÄT

DARMSTADT

Summary

- GW from NS mergers give constraints on the EoS via
 - Inspiral phase (tidal effects)
 - Merger phase (collapse behavior, M_{thres})
 - Postmerger phase (remnant oscillations, f_{peak})
- Signals of a phase transition are
 - Deviations from empirical relation between tidal deformability and f_{peak}
 - Constraints on the onset density possible from GWs
 - Potentially reduced M_{thres} (with increased threshold tidal deformability)
- M_{thres} informs about neutron star properties

Thank you for your attention!!

3/26/21 | SFB 1245 Workshop 2021 | TU Darmstadt | Sebastian Blacker | Project B07 | 19