Low-energy dipole response of the halo nuclei ^{6,8}He

TECHNISCHE UNIVERSITÄT DARMSTADT

SFB Workshop, 24.03.2021 C. Lehr

Dipole response of ⁶He and ⁸He

⁶He

- Expand data from Aumann et al., Phys. Rev. C 59 (1999) 1252
- Extend dipole-strength distribution up to 15 MeV

⁸He

- Only 2n channel measured by *Meister et al., Nucl. Phys. A 700 (2002) 3*
- Reconstruction of ⁸He 4n channel possible for the first time with NeuLAND and NEBULA

Experiment

- Carried out July 2017 at SAMURAI at RIBF
- ¹⁸O primary beam @ 220 AMeV
- ⁶He and ⁸He secondary beams @ 185 AMeV
- Beam rate ~100 kHz for both settings
- Series of targets with increasing Z: Pb, Sn, Ti, C, CH₂

SAMURAI setup

- Versatile setup for reaction measurements in inverse kinematics
- Kinematically complete measurement
- Superconducting dipole (up to $B\rho = 7.08 \text{ Tm}$)

- NeuLAND and NEBULA for neutron detection
- Arranged in 3 separate walls
- 88 cm of plastic scintillator in total

24/03/21 | TU Darmstadt - Institut für Kernphysik | AG Aumann | Christopher Lehr | 3

Neutron detectors

NeuLAND demonstrator:

- 400 plastic scintillator bars arranged in 4 double planes
- Horizontal and vertical
- 5 x 5 x 250 cm

NEBULA

- 120 plastic scintillator bars arranged in 4 planes in 2 separate walls
- All vertical
- 12 x 12 x 180 cm

4n detection possible for the first time

Neutron reconstruction

NEBULA Reconstruction algorithm **NeuLAND** Apply ToF and Q cuts 1. 2. Cluster algorithm: $|t_1 - t_2| < 1.33$ ns, $|x_1 - x_2| < 180$ mm β (NeuLAND) β_{12} $|t_1 - t_2| < 2.0$ ns, $|x_1 - x_2| < 300$ nm (NEBULA) 3. Identify gamma cross talk: $1/\beta_{12} \approx 1$ β_{01} Identify cross talk from scattered 4. $\beta_{12} < \beta_{01}$ neutrons: 5. Apply veto condition

Different-wall cross talk treated according to *T. Nakamura, Y. Kondo, NIM B 376 (2016) 156–161*

4n Efficiency & Response

Performance of reconstruction algorithm

- Geant4 simulation of full experiment setup including neutron detector and fragment momentum resolutions
- Reproducing hit multiplicity, hit distribution, light output and ToF of neutron response in NeuLAND and NEBULA
- Algorithm applied to experiment and simulation data in the same way
- Performance 2n:

Total efficiency: ~12% at 1 MeV Cross-talk contribution: ~3% at 1 MeV

• Performance 4n:

Total efficiency: ~1.2% at 1 MeV Cross-talk contribution: ~20% at 1 MeV

Nuclear contribution – Scattering angles

24/03/21 | TU Darmstadt - Institut für Kernphysik | AG Aumann | Christopher Lehr | 7

Nuclear contribution – Scattering angles

 $^{6}\text{He} \rightarrow {}^{4}\text{He} + 2n$

Nuclear contribution – Scale parameter

Scale parameter Γ for subtraction of nuclear contribution

- Determined from fit of B(E1) of Sn target to Pb target
- $\Gamma \propto A^{1/3}$

24/03/21 | TU Darmstadt - Institut für Kernphysik | AG Aumann | Christopher Lehr | 9

$^{6}\text{He} \rightarrow {}^{4}\text{He} + 2n$ Pb Coulomb

$^{6}\text{He} \rightarrow {}^{4}\text{He} + 2n$ Pb Coulomb

$^{6}\text{He} \rightarrow {}^{4}\text{He} + 2n$

- Energy weighted cluster sum rule exhausted at 7.47 MeV
- $\succ \ \sqrt{\langle r_{c,2n}^2 \rangle} = 3.35 \pm 0.08 \text{ fm} \qquad \sqrt{\langle r_c^2 \rangle} = 1.12 \pm 0.03 \text{ fm}$
- H. Esbensen et al., PRC 76, 024302 (2007) $\succ \sqrt{\langle r_{c,2n}^2 \rangle} = 3.71 \pm 0.07 \text{ fm}$
- G. Papadimitriou et al., PRC 84, 051304 (2011) $\blacktriangleright \sqrt{\langle r_c^2 \rangle} = 1.14 \text{ fm}$
- rms charge radius (fm) 2.7 2.6 2.5 2.4 1.7 -1.6 1.5 proton point radius of ⁴He 1.4

2.1

2.0

1.9

1.8

preliminary

FIG. 4. (Color online) Different contributions to the charge radius of ⁶He (solid line, squares) and ⁸He (dashed line, dots) calculated in the GSM. The core swelling contribution is taken from GFMC calculations of Ref. [22]. Recently revised experimental charge radii come from [7] (triangles). The NCSM [10] (stars) and GFMC [9] (pentagons) results are marked for comparison. The inset shows GSM rms neutron radii compared to experimental results [34].

Picture taken from G. Papadimitriou et al., PRC 84, 051304 (2011)

- Charge radius of 6He mainly depends on core recoil due to correlations of the halo neutrons and core swelling
- Core swelling effect smaller than in 11Li (inert alpha core)

$^{8}\text{He} \rightarrow ^{6}\text{He} + 2n$ / $^{8}\text{He} \rightarrow ^{4}\text{He} + 4n$

$^{8}\text{He} \rightarrow ^{6}\text{He} + 2n$ / $^{8}\text{He} \rightarrow ^{4}\text{He} + 4n$

Coupled-cluster theory calculations by F. Bonaiti and S. Bacca

Coupled-cluster approximation levels: D/D/D T-1/T-1/D

Low-energy dipole response of the halo nuclei ^{6,8}He

TECHNISCHE UNIVERSITÄT DARMSTADT

SFB Workshop, 24.03.2021 C. Lehr

Thank you for your attention!

24/03/21 | TU Darmstadt - Institut für Kernphysik | AG Aumann | Christopher Lehr | 15