

Electroweak Processes from First Principles

Sonia Bacca

Johannes Gutenberg Universität Mainz

October 5th, 2022

SFB1245 Annual Workshop

Ab initio nuclear theory

• Start from neutrons and protons as building blocks (centre of mass coordinates, spins, isospins)

 Solve the non-relativistic quantum mechanical problem of A-interacting nucleons

 $H|\psi_i\rangle = E_i|\psi_i\rangle$

 $H = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + \dots$

using interactions from chiral effective field theory

• Find numerical solutions with no approximations or controllable approximations

Coupling to the electroweak field

Cross
Section
$$\sigma_{ew} \sim R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Electroweak operator

The continuum problem

$$R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Depending on E_f , many channels may be involved

Integral Transforms

Reduce the continuum problem to a bound-state-like equation

JG U

Sonia Bacca

Sum Rules

$$m_n = \int_0^\infty d\omega \,\,\omega^n R(\omega) = \langle \Psi_0 | \hat{\Theta}^\dagger (\hat{H} - E_0)^n \hat{\Theta} | \Psi_0 \rangle$$

The polarizability is an inverse-energy weighted sum rule of the dipole response function

$$\alpha_D = 2 \ \alpha \ m_{-1} = 2 \ \alpha \ \langle \Psi_0 | \Theta^{\dagger} \frac{1}{(H - E_0)} \Theta | \Psi_0 \rangle$$

Can be obtained from the Lorentz Integral Transform in the limit of $\Gamma \rightarrow 0$

Coupled-cluster theory formulation

$$|\psi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle = e^{T}|\phi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle$$

$$T = \sum T_{(A)}$$

$$\begin{array}{cccccc} T_1 & T_2 & T_3 & \text{cluster expansion} \\ \hline \mathbf{a}_{b,\dots} & \hline \mathbf{i}_{i,\dots} & \hline \mathbf{i}_{i,\dots}$$

Results with implementation at CCSD level + some study of triples contributions

Sonia Bacca

Title Text

Electric Dipole Polarizability (SFB 1245, B04)

Motivation for B04

See Xavier Roca-Maza's talk

$$E(\rho, \delta) = E(\rho, 0) + S(\rho)\delta^{2} + \mathcal{O}(\delta^{4})$$

$$S(\rho) = S_{0}^{-} + \frac{L}{3\rho_{0}}(\rho - \rho_{0}) + \frac{K_{sym}}{18\rho_{0}^{2}}(\rho - \rho_{0})^{2} + \dots$$

Symmetry energy at saturation density

Slope parameter, related to pressure of pure neutron matter at saturation density

 $\rho = \rho_n + \rho_p, \quad \delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$

The ⁴⁸Ca nucleus

The ⁶⁸Ni nucleus

S.Kaufmann, J. Simonis, SB et al., PRL 104 (2020) 132505

The ⁶⁸Ni nucleus

S.Kaufmann, J. Simonis, SB et al., PRL 104 (2020) 132505

The ⁴⁰Ca nucleus

R.W. Fearick et al, in preparation

The ⁴⁰Ca nucleus

R.W. Fearick et al, in preparation

- Improved calculations with triple correlations in the ground state
- Constraints on symmetry energy: $S_0 = 28 32 \text{ MeV}$ L = 41 49 MeV

Title Text

Applications to lepton-nucleus scattering

Neutrino Oscillations

Deep Underground Neutrino Experiment

Aims and challenges

Electrons and neutrinos

Recent Highlights on (e,e')

First ab-initio results for many-body system of 40 nucleons

Sobcyzk, Acharya, SB, Hagen, PRL 127 (2021) 7, 072501

Recent Highlights on (e,e')

Inelastic transverse response function

Acharya, Sobcyzk, SB, Hagen, in preparation

20

15

10

5

0

25

50

75

100

 ω [MeV]

SCGF: Rocco, Barbieri, PRC 98 (2018) 022501

da/(dwdcos0) [nb/(srMeV)]

Recent Highlights on (e,e')

Access higher energies with Spectral Functions

Sobcyzk, SB, Hagen, Papenbrock, Phys. Rev. C 106, 034310 (2022)

125

150

175

Outlook

Substantial progress in first principle calculations of electroweak reactions

• B04 in **2FP**: Two-particle attached technique (lead by F. Bonaiti)

3FP: Develop two-particle removed and one-particle removed/attach techniques to support the NEPTUNE program (⁶Li, ¹⁴N, ³⁹K besides ¹⁶O)

See talk by Martin Baumann

Thanks to all my collaborators: SFB Colleagues +

B. Acharya, F. Bonaiti, W. Jiang, G. Hagen, T. Papenbrock, J. Simonis, C. Payne, **J.E. Sobczyk**, et al.

Thanks for your attention!