JOHANNES GUTENBERG JGL /FRSITAT MAINZ

Ground and dipole-excited states of the halo nucleus ⁸He

FRANCESCA BONAITI, JGU MAINZ (PROJECT BO4)

SFB 1245 ANNUAL WORKSHOP @ DARMSTADT

OCTOBER 5, 2022

In collaboration with: Sonia Bacca Gaute Hagen (ORNL)

Motivation

Motivation

Ab initio methods

H. Hegert, Front.in Phys. 8 379 (2020)

Ab initio methods

H. Hegert, Front.in Phys. 8 379 (2020)

Ab initio methods

H. Hegert, Front.in Phys. 8 379 (2020)

□ Main degrees of freedom of the problem: protons and neutrons.

Solve

 $H |\psi\rangle = E |\psi\rangle$ $H = T + V_{NN} + V_{3N}$

with controlled approximations.

 Two ingredients: a nuclear interaction model and a manybody solver.

Nuclear interaction models

We work with Chiral Effective Field Theory interactions:

- **Low-energy approximation of QCD**, with π , n, (Δ) as degrees of freedom.
- Separation of scales allows for **low-momentum expansion**, many-body forces arise naturally in the theory.
- □ Short-range physics enclosed in **low-energy constants**, fitted to experiment.

Nuclear interaction models

We work with Chiral Effective Field Theory interactions:

- **Low-energy approximation of QCD**, with π , n, (Δ) as degrees of freedom.
- Separation of scales allows for **low-momentum expansion**, many-body forces arise naturally in the theory.

□ Short-range physics enclosed in **low-energy constants**, fitted to experiment.

NNLO_{sat} [A. Ekstrom et al, 2015]

□ Fitted on radii and BEs of light and medium-mass nuclei, including carbon and oxygen isotopes.

$\Delta NNLO_{GO}$ [W. G. Jiang et al, 2020]

- \Box Includes Δ explicitly.
- □ Fitted on radii and BEs of light nuclei and nuclear matter saturation.
- □ Two cutoffs: 394 and 450 MeV.

Coupled-cluster theory

 \square Starting point: Hartree-Fock reference state on the HO basis $|\phi
angle$

Correlations are included via **exponential ansatz**:

$$|\psi\rangle = e^T |\phi\rangle$$

with

$$T = \sum t_i^a a_a^{\dagger} a_i + \sum t_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_j a_i + \sum t_{ijk}^{abc} a_a^{\dagger} a_b^{\dagger} a_c^{\dagger} a_k a_j a_i + \dots$$

→ coefficients obtained via coupled-cluster equations

Coupled-cluster theory

 \square Starting point: Hartree-Fock reference state on the HO basis $|\phi
angle$

Correlations are included via **exponential ansatz**:

$$|\psi\rangle = e^T |\phi\rangle$$

with

Coupled-cluster theory

 \Box Starting point: Hartree-Fock reference state on the HO basis $|\phi
angle$

Correlations are included via **exponential ansatz**:

$$|\psi\rangle = e^T |\phi\rangle$$

with

Charge radius

FB et al., PRC 105, 034313 (2022)

Dipole excitations are described by the nuclear response function.

$$R(\omega) = \sum_{f} \left| \langle f | \hat{\Theta} | 0 \rangle \right|^2 \delta(\omega - E_f + E_0)$$

continuum problem addressed via Lorentz Integral Transform method

Dipole excitations are described by the nuclear response function.

$$R(\omega) = \sum_{f} \langle f | \hat{\Theta} | 0 \rangle |^2 \delta(\omega - E_f + E_0)$$

continuum problem addressed via Lorentz Integral Transform method

Dipole polarizability

$$\alpha_D = 2\alpha\hbar c \int_0^\infty d\omega \,\omega^{-1} R(\omega)$$

FB et al., PRC 105, 034313 (2022)

Dipole polarizability

$$\alpha_D = 2\alpha\hbar c \int_0^\infty d\omega \,\omega^{-1} \,R(\omega)$$

Interaction	$\alpha_D \ (\ {\rm fm}^3)$
NNLO _{sat}	0.37(3)
$\Delta NNLO_{GO}(450)$	0.42(3)
$\Delta NNLO_{GO}(394)$	0.39(2)

 5 times larger than α_D(⁴He) = 0.074(9) fm³ [Arkatov et al, 1975, 1980, Pachucki et al, 2006].

FB et al., PRC 105, 034313 (2022)

Comparison between chiral orders

B. Acharya, S. Bacca, **FB** et al, arXiv:2210.04632

Running sums

Running sums

10

Deformation in ⁸He?

SA-NCSM ground state calculations

Launey et al., EPJ Special Topics 229, 2429-2441 (2020)

Coupled cluster theory for deformed nuclei

- Coupled-cluster computations starting from axiallysymmetric reference states now possible [S. J. Novario et al, 2020].
- Need of symmetry restoration [G. Hagen et al, 2022].
- $\hfill\square$ To do that, we calculate the expectation value:

 $E_J = \frac{\langle \widetilde{\Psi} | P_J H | \Psi \rangle}{\langle \widetilde{\Psi} | P_J | \Psi \rangle}$

In this way we project a state with $J_z = 0$ on total angular momentum J.

Deformed reference states for ⁸He

We start from Hartree-Fock calculations where:

- \Box we assume J_z conservation,
- we minimize the energy under the constraint of a fixed expectation value for the quadrupole moment.

We then perform an **angular momentum projection** after variation (PAV) of the E_{gs} vs Q curve.

Deformed reference states for ⁸He

We start from Hartree-Fock calculations where:

- only axial symmetry is assumed,
- we minimize the energy under the constraint of a fixed expectation value for the quadrupole moment.

We then perform an **angular momentum projection** after variation (PAV) of the E_{gs} vs Q curve.

Deformed CC results for ⁸He

Conclusions and outlook

 \Box Good agreement between theory and experiment for ground-state properties of ⁸He.

- □ Our theory may miss some correlations in the description of the **low-lying dipole states**.
- □ Neglecting the nuclear deformation effects could be a possible reason.
- □ Symmetry-restored CC calculations point to an **interplay of prolate and oblate shapes** in the ground state of ⁸He.
- \Box Our plan is to extend our $\alpha_{\rm D}$ calculations to the deformed coupled cluster framework.

BACKUP

Ground state energy

FB et al., PRC 105, 034313 (2022)

Low-lying dipole states in ⁸He

25

30

.....

Energy-weighted dipole sum rule

FB et al., PRC 105, 034313 (2022)

Cluster sum rule

❑ How much of the dipole strength of ⁸He is related to the relative motion between core and halo?

□ Let us describe ⁸He in terms of an ⁴He core and a four-neutron halo.

 $\hfill\square$ Comparing the m_1 sum rule for ⁸He to

$$\int_{\omega_{th}}^{\infty} d\omega \left[\sigma_{\gamma}(\omega) - \sigma_{\gamma}^{cl_{1}}(\omega) - \sigma_{\gamma}^{cl_{2}}(\omega) \right] =$$

$$5.974 \frac{(Z_{1}A_{2} - Z_{2}A_{1})^{2}}{AA_{1}A_{2}} \text{MeV fm}^{2} (1 + \kappa).$$

we probe a **new dipole degree of freedom**, connected to the relative motion of two "clusters" inside the nucleus (**cluster sum rule**).

□ Using NNLO_{sat}, and the m₁ sum rule value for ⁴He (\approx 41 MeV fm²), we get:

Dipole excitations in nuclei can be studied calculating the **nuclear response function**.

$$R(\omega) = \sum_{f} |\langle f | \hat{\Theta} | 0 \rangle |^2 \delta(\omega - E_f + E_0)$$

Dipole excitations in nuclei can be studied calculating the **nuclear response function**.

$$R(\omega) = \sum_{f} |\langle f | \hat{\Theta} | 0 \rangle |^2 \delta(\omega - E_f + E_0)$$

□ To avoid the **continuum problem** we calculate a **Lorentz Integral Transform** of the response.

$$L(\sigma, \Gamma) = \frac{\Gamma}{\pi} \int d\omega \ \frac{R(\omega)}{(\omega - \sigma)^2 + \Gamma^2}$$

□ In this way we obtain a **bound-state-like problem**, that we can handle in CC theory.

Dipole excitations in nuclei can be studied calculating the **nuclear response function**.

$$R(\omega) = \sum_{f} |\langle f | \hat{\Theta} | 0 \rangle |^2 \delta(\omega - E_f + E_0)$$

□ To avoid the continuum problem, we calculate a Lorentz Integral Transform of the response.

$$L(\sigma,\Gamma) = \frac{\Gamma}{\pi} \int d\omega \ \frac{R(\omega)}{(\omega-\sigma)^2 + \Gamma^2}$$

□ In this way we obtain a **bound-state-like problem**, that we can handle in CC theory.

□ Then via **inversion** we get to the response.

