Weak decay of ¹¹Be in Halo EFT

TECHNISCHE UNIVERSITÄT DARMSTADT

SFB 1245 Annual Workshop

Darmstadtium

October 4 - 7, 2022

Wael Elkamhawy

Institut für Kernphysik Technische Universität Darmstadt

in collaboration with H.-W. Hammer, Z. Yang and L. Platter

October 7, 2022

Outline

- Motivation for rare decay ${}^{11}\text{Be} \rightarrow {}^{10}\text{Be} + p + e^- + \bar{\nu}_e$
- Halo EFT for weak decay of ¹¹Be
- Effective Lagrangians
 - Strong sector
 - Weak sector
- Results

Conclusion

Motivation for rare decay of ¹¹Be

Rare decay:
$${}^{11}\text{Be} \rightarrow {}^{10}\text{Be} + p + e^- + \bar{\nu}_e$$

Experiment

[Riisager et al., 2014]:

 $b_{\rm p} = 8.3(6) \times 10^{-6}$

- [Baye and Tursunov, 2011]:
 - $b_p = 3.0 \times 10^{-8}$

Riisager et al.:

- \Rightarrow New single-particle resonance in ¹¹B? [Riisager et al., 2014]
- \Rightarrow Possible pathway to detect physics beyond the SM? [Pfützner and Riisager, 2018]

Motivation for rare decay of ¹¹Be

More recent experiments

- [Ayyad et al., 2019]: $b_p = 1.3(3) \times 10^{-5}$
 - Evidence for resonance in ¹¹B with $E_R = 0.196(20)$ MeV and $\Gamma_R = 12(5)$ keV
- [Riisager et al., 2020]: $b_p \le 2.2 \times 10^{-6}$
 - Inconsistencies between different measurements
- [Ayyad et al., 2022]: Proton resonance scattering
 - New evidence for resonance in ¹¹B with $E_R = 0.171(20)$ MeV and $\Gamma_R = 4.5(1.1)$ keV

 \Rightarrow Branching ratio for β -delayed proton emission in ¹¹Be remains an unsolved problem

Halo EFT for β -delayed proton emission from ^{11}Be

Halo EFT offers new perspective on β -delayed proton emission from ¹¹Be

- Ground state of ¹¹Be is a halo state
- ► $S_n = 501.65(25)$ keV [Kelley et al., 2012], $E_{ex} = 3368.03(3)$ keV [Tilley et al., 2004] \Rightarrow Separation of scales: $S_n \ll E_{ax}$

Halo EFT for β -delayed proton emission from ^{11}Be

Halo EFT offers new perspective on β -delayed proton emission from ¹¹Be

- Ground state of 11 Be is a halo state
- ▶ $S_n = 501.65(25) \text{ keV}$ [Kelley et al., 2012],
 - $E_{\mathrm{ex}}=3368.03(3)~\mathrm{keV}$ [Tilley et al., 2004]
 - \Rightarrow Separation of scales: $S_n \ll E_{ex}$
- Halo EFT degrees of freedom: tightly bound core and loosely bound valence neutron

Halo EFT for β -delayed proton emission from $^{11}\mathrm{Be}$

Rare decay:
11
Be $\rightarrow \, ^{10}$ Be + p + e⁻ + $\bar{\nu_{e}}$

►
$$T_{1/2}^{1n} \approx 10 \text{ min } \ll T_{1/2}^{10 \text{ Be}} \approx 10^6 \text{ a}$$

 \Rightarrow Always halo neutron that $\beta\text{-decays}$ in the halo picture

- Decay observables parametrized in terms of few measurable parameters
- EFT power counting \Rightarrow robust uncertainty estimate

Halo EFT well suited for the theoretical description of this decay providing decay rate with robust uncertainty estimate

Strong effective Lagrangian

October 7, 2022 | Weak decay of ¹¹Be in Halo EFT | Wael Elkamhawy | 6

Weak Effective Lagrangian

$$\mathcal{L}_{\mathsf{weak}} = -rac{\mathsf{G}_{\mathsf{F}}}{\sqrt{2}} \, \ell_{-}^{\mu} \, \left(\left(\mathsf{J}_{\mu}^{+}
ight)^{\mathsf{1b}} + \left(\mathsf{J}_{\mu}^{+}
ight)^{\mathsf{2b}}
ight)$$

1b current:

2b current:

$$\begin{pmatrix} J_{\mu}^{+} \end{pmatrix}^{1b} = \begin{cases} p^{\dagger} n & \mu = 0 \text{ (Fermi)} \\ -g_{A} p^{\dagger} \sigma_{k} n & \mu = k = 1, 2, 3 \text{ (Gamow-Teller)} \end{cases}$$
$$\begin{pmatrix} J_{\mu}^{+} \end{pmatrix}^{2b} = \begin{cases} -d_{B}^{\dagger} d_{Be} & \mu = 0 \text{ (Fermi)} \\ g_{A} d_{B}^{\dagger} \sigma_{k} d_{Be} & \mu = k = 1, 2, 3 \text{ (Gamow-Teller)} \end{cases}$$

 $\ell^{\mu}_{-} = \bar{\boldsymbol{u}}_{\mathbf{o}} \gamma^{\mu} (1 - \gamma^5) \boldsymbol{v}_{\bar{u}}$

Feynman diagrams

Differential decay rate

Differential decay rate

No strong fsi

•
$$b_p^{B\&T} = 3 \times 10^{-8}$$
 [Baye and Tursunov, 2011]

$$b_{p}^{\text{fsi}} = (1.31 \pm 0.51) \times 10^{-8}$$

EFT including resonance up to NLO

$$\begin{split} \mathbf{E}_{\mathbf{R}} &= 0.196 \pm 0.020 \; \text{MeV} \; \text{[Ayyad et al., 2019]} \\ \mathbf{b}_{\mathbf{p}} &= \left(2.3^{+2.5}_{-1.3} \text{(exp.)}^{+1.8}_{-0.4} \text{(theo.)} \right) \times 10^{-6} \end{split}$$

Differential decay rate

No strong fsi

•
$$b_{
ho}^{
m B\&T} = 3 imes 10^{-8}$$
 [Baye and Tursunov, 2011]

$$b_p^{\rm fsi} = (1.31 \pm 0.51) \times 10^{-8}$$

EFT including resonance up to NLO

$$\begin{split} \mathbf{\textit{E}}_{\textit{R}} &= 0.171 \pm 0.020 \; \text{MeV} \; \text{[Ayyad et al., 2022]} \\ \mathbf{\textit{b}}_{\textit{p}} &= \left(5.7^{+5.0}_{-2.9} (\text{exp.})^{+4.1}_{-1.1} (\text{theo.}) \right) \times 10^{-6} \end{split}$$

Partial decay rate as a function of E_R

Comparison to both experiments by Ayyad et al.

$m{E_{R}}=(0.196\pm0.020)~{ extsf{MeV}}$ [Ayyad et al., 2019]

$$m{b}_{m{p}} = \left(2.3^{+2.5}_{-1.3}(ext{exp.})^{+1.8}_{-0.4}(ext{theo.})
ight) imes 10^{-6}$$

 $m{b}_{m{p}} = (1.3 \pm 0.3) imes 10^{-5}$ [Ayyad et al., 2019]

$$\Gamma_{R} = \left(11.3^{+6.9}_{-4.2}(\text{exp.})^{+7.0}_{-2.7}(\text{theo.})\right) \text{ keV}$$

$$\Gamma_{R} = (12 \pm 5) \text{ keV [Ayyad et al., 2019]}$$

$$\log(ft) = 3.38$$
, $B_{GT} = 1.59$

 $m{\textit{E}}_{m{\textit{R}}} = (0.171 \pm 0.020) \; m{\mathsf{MeV}}$ [Ayyad et al., 2022]

$$m{b}_{p} = \left(5.7^{+5.0}_{-2.9}(\text{exp.})^{+4.1}_{-1.1}(\text{theo.})
ight) imes 10^{-6}$$

 $m{b}_{p} = (1.3 \pm 0.3) imes 10^{-5}$ [Ayyad et al., 2019]

$$\begin{split} \Gamma_{\it R} &= \left(6.2^{+3.8}_{-2.6} (\text{exp.})^{+3.9}_{-1.4} (\text{theo.})\right) \; \text{keV} \\ \Gamma_{\it R} &= (4.5 \pm 1.1) \; \text{keV} \; \text{[Ayyad et al., 2022]} \end{split}$$

$$\log(ft) = 3.37$$
, $B_{GT} = 1.63$

Conclusion

- ▶ No fsi \Rightarrow qualitative agreement with [Baye and Tursunov, 2011]
- ► Inclusion of low-lying resonance in ¹¹B with either $E_R = 0.196$ MeV [Ayyad et al., 2019] or $E_R = 0.171$ MeV [Ayyad et al., 2022]
 - \Rightarrow Partial decay rates and resonance widths consistent with these experiments
- Our model-independent calculations support experimental finding of a low-lying resonance
- No exotic mechanism needed for β -delayed proton emission from ¹¹Be

Thank you for your attention!

Backup slides

Possible resonance parameter combinations fulfilling sum rule

October 7, 2022 | Weak decay of ¹¹Be in Halo EFT | Wael Elkamhawy | 16

Differential decay rate (no definite isospin)

No strong fsi Baye and Tursunov 10-EFT: no fsi $\blacktriangleright b_{p}^{B\&T} = 3 \times 10^{-8}$ ----- EFT: $r_0 = 2.7 \text{ fm}, r_0^C = 1.5 \text{ fm}$ ----[s⁻¹MeV⁻ 10^{-6} • $b_{p}^{fsi} = (1.31 \pm 0.51) \times 10^{-8}$ 10^{-7} $\frac{H}{2}$ $\frac{10^{-8}}{10^{-9}}$ EFT including resonance up to NLO 10^{-10} $E_{R} = 0.196 \pm 0.020 \text{ MeV}$ [Ayyad et al., 2019] 10^{-11} 0.000.05 0.10 0.150.20 $b_{p}^{\text{NLO}} = 4.9^{+5.6}_{-2.9} (\text{exp.})^{+4.0}_{-0.8} (\text{theo.}) \times 10^{-6}$ $E \,[{\rm MeV}]$

0.30

0.25

October 7, 2022 | Weak decay of ¹¹Be in Halo EFT | Wael Elkamhawy | 17

Differential decay rate (no definite isospin)

No strong fsi Baye and Tursunov EFT: no fsi 10- $\blacktriangleright b_{p}^{B\&T} = 3 \times 10^{-8}$ ----- EFT: $r_0 = 2.7$ fm, $r_0^C = 1.5$ fm ---- $[s^{-1}MeV^{-1}]$ 10^{-6} • $b_{p}^{fsi} = (1.31 \pm 0.51) \times 10^{-8}$ 10^{-7} $\frac{H}{2}$ $\frac{10^{-8}}{10^{-5}}$ EFT including resonance up to NLO 10^{-10} $E_{R} = 0.171 \pm 0.020 \text{ MeV}$ [Ayyad et al., 2019] 10^{-11} 0.00 0.05 0.10 0.150.20 $b_{p}^{\text{NLO}} = 1.2^{+1.0}_{-0.6} (\text{exp.})^{+0.9}_{-0.2} (\text{theo.}) \times 10^{-5}$ $E \,[{\rm MeV}]$

0.30

0.25

Results (no definite isospin)

Final results using E_R from Ayyad et al., 2019

 $\textit{E}_{\textit{R}} = 0.196 \pm 0.020 \; \text{MeV}$ [Ayyad et al., 2019]

$$b_{p} = \left(4.9^{+5.6}_{-2.9}$$
(exp.) $^{+4.0}_{-0.8}$ (theo.) $ight) imes 10^{-6}$

$$\Gamma_{R} = \left(9.0^{+4.8}_{-3.3} \text{(exp.)}^{+5.3}_{-2.2} \text{(theo.)}\right) \text{ keV}$$

 $\log(\mathit{ft})=3.04\textit{,}~\textit{B}_{\rm F}=0.96$ and $\textit{B}_{\rm GT}=2.88$

Final results using E_R from Ayyad et al., 2022

$$\textit{E}_{\textit{R}} = 0.171 \pm 0.020~{
m MeV}$$
 [Ayyad et al., 2022]

$$b_{p} = \left(1.2^{+1.1}_{-0.6} \text{(exp.)}^{+0.9}_{-0.2} \text{(theo.)}
ight) imes 10^{-5}$$

$$\Gamma_{R} = \left(5.0^{+3.0}_{-2.1} \text{(exp.)}^{+3.1}_{-1.1} \text{(theo.)}
ight) \,\,\text{keV}$$

$$\log(ft) = 3.03$$
, $B_{\mathsf{F}} = 0.97$ and $B_{\mathsf{GT}} = 2.92$

Possible resonance parameter combinations fulfilling sum rule (no definite isospin)

FECHNISCHE

DARMSTAD

References

Ayyad, Y. et al. (2019).

Direct observation of proton emission in 11Be. *Phys. Rev. Lett.*, 123(8):082501. [Erratum: Phys.Rev.Lett. 124, 129902 (2020)].

Ayyad, Y. et al. (2022).

Evidence of a near-threshold resonance in ¹¹B relevant to the β -delayed proton emission of ¹¹Be.

Baye, D. and Tursunov, E. M. (2011).

Beta delayed emission of a proton by a one-neutron halo nucleus. *Phys. Lett.*, B696:464–467.

References

Kelley, J. H., Kwan, E., Purcell, J. E., Sheu, C. G., and Weller, H. R. (2012). Energy levels of light nuclei. *Nucl. Phys.*, A880:88–195.

Pfützner, M. and Riisager, K. (2018).

Examining the possibility to observe neutron dark decay in nuclei. *Phys. Rev.*, C97(4):042501.

```
Riisager, K. et al. (2014).
```

¹¹ $Be(\beta p)$, a quasi-free neutron decay? Phys. Lett., B732:305–308.

```
Riisager, K. et al. (2020).
```

Search for beta-delayed proton emission from 11 Be.

References

Tilley, D., Kelley, J., Godwin, J., Millener, D., Purcell, J., Sheu, C., and Weller, H. (2004).
 Energy levels of light nuclei A=8,9,10.
 Nucl. Phys. A, 745:155–362.

