Nuclear Matter Properties in Neutron-Star Mergers

Max Jacobi

in collaboration with: Federico Guercilena Almudena Arcones

B07 SFB Workshop 2022

EOS effects in mergers

- Multi-messenger observables effected by EOS
 - Inspiral/chirp GW signal (GW170817)
 - Collapse
 - Post-merger GW signal
 - ► Ejecta properties → Kilonova
- Use nuclear matter properties instead of TOV-related parameters

EOS effects in merger simulations

- Larger NS radii \rightarrow Less violent plunge
- Tidal disruption of star depends on structure of BNSs
- ▶ Prompt / delayed / no collapse \rightarrow P at high density

EOS effects in merger simulations

- Remnant deformation / oscillation:
- $\rightarrow~$ Post-merger GW emission
- $\rightarrow\,$ Disk formation + mass ejection

EOS effects in merger simulations

- Shock heating depends on thermal effects \rightarrow Effective mass
- Neutrinos emission + absorption

EOS Models

EOS	$\frac{m^*}{m_N}$	В	K	$E_{ m sym}$	L	$ ho_0$
LS220 [†]	1.0	16.0	220	29.3	73.7	2.59
$LS175^\dagger$			175			
$LS255^{\dagger}$			255			
$m_{0.8}^{*}$	0.8		220		79.3	
$m_{\rm S}^*$	0.634				86.5	
$(m^*K)_S$			281			
$(m^* KE_{sym})_S$				36.9	109.3	
SkShen		16.3				2.43
Shen					110.8	

Study impact of individual nuclear matter properties following Yasin et al. 2020

(Schneider et al. 2017, 2018)

- ► Fiducial model LS220 EOS (Lattimer & Swesty 1991)
- > Vary effective nucleon mass m^* and incompressibility K
- Match nuclear matter properties to Shen EOS (Shen et al. 1998)

Nuclear matter properties

- $K \rightarrow \text{slope of cold } P(\rho = \rho_0)$
- $\blacktriangleright m^* \rightarrow {\rm cold \ and \ thermal} \ P$
- ► $E_{sym} \rightarrow L \rightarrow cold P + composition$

Carbone & Schwenk 2019, Yasin et al. 2020, Keller et al. 2021,

Huth, Wellenhofer, Schwenk 2021

BNS simulations with the Einstein Toolkit

- Full GR simulations
- Einstein Toolkit + WhiskyTHC (Radice et al. 2014)
- Neutrino transport:
 - Emission: local leakage scheme (Galeazzi et al. 2013)
 - Absorption: ray-by-ray "M0" scheme (Radice et al. 2016)
- ▶ Initial data with Lorene library (Gourgoulhon et al. 2001)
- One simulation per EOS
- Total mass 2.73_{\odot} , mass ratio = 1
- $M_{\rm chirp} = 1.188 M_{\odot}$ (GW170817)

einsteintoolkit.org

Remnant properties

- ▶ Pressure at high $\rho \rightarrow \rho_{\max}$
 - ► LS175[†]: instant collapse
 - ► LS220[†]: delayed collapse
 - Others: no collapse
- Shen and SkShen similar

Remnant properties

- ▶ Pressure at high $\rho \rightarrow \rho_{max}$
 - ► LS175[†]: instant collapse
 - ► LS220[†]: delayed collapse
 - Others: no collapse
- Shen and SkShen similar
- $\blacktriangleright \text{ Softer EOS} \rightarrow \text{more shock heating}$
- Lower $m^* \rightarrow$ more shock heating

Disk properties

- Disk definition is ambiguous for NS remnants
- Higher K, lower $m^* \rightarrow$ heavier disk
- ▶ Remnant deformation important ⇒ dependence on EOS complecated

Gravitational waves

 Post-merger GW amplitude decay varies

Gravitational waves

- Post-merger GW amplitude decay varies
- Peak frequency correlated with compactness
- Fit universal relations $(\pm 10\%)$

(Rezzolla & Takami, Bauswein et al. 2016, Kiuchi et al. 2020)

▶ Tidal ejecta: Low ye, equatorial

- ► Tidal ejecta: Low ye, equatorial
- Shock heated ejecta: Broad ye, broad angular distribution

- ▶ Tidal ejecta: Low ye, equatorial
- Shock heated ejecta: Broad ye, broad angular distribution
- \blacktriangleright Neutrino wind: ν absorption above disk

- ► Tidal ejecta: Low ye, equatorial
- Shock heated ejecta: Broad ye, broad angular distribution
- **>** Neutrino wind: ν absorption above disk
- Equatorial wind: Disk shields from ν absorption \rightarrow lower Y_e

- Dependent on K
- ▶ Minor dependence on m^*
- No tidal ejecta for stiffest EOSs

- ▶ Dependent on m^*
- SkShen and Shen even lower

- Correlates with remnant deformation
- Not saturated

Summary

- ▶ K and m^{*} most important for
 - Remnant dynamics
 - Post-merger GW spectrum
- $\blacktriangleright \ {\it K} \rightarrow {\it larger effect for high } \rho$
- ▶ $m^* \rightarrow$ thermal effects secondary to cold pressure
- SkShen very similar to Shen (especially GW spectrum)
- ▶ Tidal ejecta correlated to K
- ▶ Shock heated ejecta correlated to m^*

