Overview and perspectives on programs at the S-DALINAC

TECHNISCHE UNIVERSITÄT

DARMSTADT

S-DALINAC

Superconducting-DArmstadt-LINear-ACcelerator

TECHNISCHE UNIVERSITÄT DARMSTADT

Operating Principle and Parameters

SRF injector

- 1x 6-cell (β=0.86) as capture
- 2x 20-cell (β=1)

SRF main linac

- 8x 20-cell (β=1)
- Particles: electrons
- Design:
 - Injector: 10 MeV, 60 μA
 - Extracted beam: 130 MeV, 20 µA
- Rep. rate: 2.997 GHz
- cw (continuous wave) operation
- ERL modes possible

Overview Operation Modes and Commissioning

- Modification lattice 2015/2016
- Commissioning of modes followed beam time schedule

Once-Recirculating ERL Operation

M. Arnold et al., First operation of the superconducting Darmstadt linear electron accelerator as an energy recovery linac, *Phys. Rev. Accel. Beams* **23**, 020101 (2020).

Challenges of twofold ERL (sharing model)

— 66 100 –

Efficiency:

$$\eta = \frac{P_{\rm b,Con} - P_{\rm b,ERL}}{P_{\rm b,Con}} = (84.0 \pm 1.2) \%$$

Stable operation (2.3 µA)

Scaling factor:

$$S_I = \frac{1}{1 - \eta} \approx 6$$

Twofold ERL @ S-DALINAC

F. Schliessmann et al., *NATURE Physics, in final review*

Twofold ERL @ S-DALINAC

Ramping measurement (0.2-7 µA)

Efficiency:

 $max(\eta) \approx 87 \%$

Scaling factor:

 $\max(S_I) \approx 8$

F. Schliessmann et al., NATURE Physics, in final review

Experimental Sites

Darmstadt High-Intensity Photon Setup

- E(e⁻) < 10 MeV
 I(e⁻) < 60 μA

Recent NRF Highlights from DHIPS

(M.Beuschlein, tomorrow B02)

Last Year's NRF Highlight from DHIPS

T-dependent Relative Self-Absorption

(P. Koseoglou, today A01)

- High-precision level widths and decay strengths
- Sensitive test of the modeling of nuclear forces and EM transitions
- Temperature-controlled target
 system
- Reduce systematic errors from uncertainty in T_{eff} by cooling/heating the targets

TECHNISCHE UNIVERSITÄT

NEPTUN Photon Tagger

(AG Aumann)

- Tagged Bremsstrahlung from 5 to 35 MeV
- 224 scintillator strips
- Upgraded for photoabsorption experiments:
 - Rapid target changer
 - Large CeBr as
 zero degree detector
 - High precision collimator

NEPTUN setup for photoabsorption experiments

4.10.2021 | Norbert Pietralla | TU Darmstadt | Overview and programs @ S-DALINAC

NEPTUN Photon Tagger

(M. Baumann, tomorrow B04)

First test: photo absorption cross section of aluminium

NEPTUN: Developments in 2020

Experiment 2020:

- low energy beam (20 MeV)
- Commissioning of
 - PROTEUS target changer
 - MiniPIX gamma beam monitor

Production-beamtime postponed to '22 due to CoViD case

Preparations for 2022:

- ⁴⁸Ca photo-absorption measurements
- 7 targets (total mass: 1.3 g) prepared at GSI
- Design of mounting and transport system

Experimental Sites

Detector Test Set-up at the S-DALINAC

FPGA based

discriminator & TDC

(AG Galatyuk + linac group)

Goals:

- R&D on diamond- and silicon-based radiation-hard detectors
 - \rightarrow highest possible timing performance
 - \rightarrow Investigation of radiation damage
 - \rightarrow Test of new read-out electronics
 - \rightarrow Develop new beam diagnostics concepts
- Successful proof-of-principle test with resolving the 3 GHz time structure of the S-DALINAC
- Next test beam planned

A 🗸

TECHNISCHE

4.10.2021 | Norbert Pietralla | TU Darmstadt | Overview and programs @ S-DALINAC

Quadrupole-Clamshell Spectrometer (QCLAM)

- Spectrometer for electron scattering
 - Sophisticated magnetooptical system for large acceptance, ~35 msrd
 - Detection block of multiwire drift chambers, scintillators, and Cherenkov detectors.
- Perfect for coincidence mesurements
 - large acceptance
 - fast timing

Programs @ QCLAM

- sLHe target (*I. Jurosevic, today A01*)
- 180° scattering (M. Spall, today B02)
- Coincidence experiment (e,e' γ) \rightarrow 3rd funding period
- DAQ re-development.
- Improved gas feed system.
- New multiwire drift chambers under construction.

(e,e'γ) @ QCLAM: Principle and Setup

- Unique setup world-wide
 - *e*⁻ spectrometer: QCLAM
 - γ detectors: 6x LaBr₃:Ce
- Inelastic nuclear excitation and prompt γ-decay
- Pure EM interaction
- Exclusive reaction
- Sensitive to interference of F_L / F_T as function of θ_{γ}

(e,e'γ) @ S-DALINAC: First Data (G. Steinhilber, PhD thesis, 2022)

TECHNISCHE UNIVERSITÄT DARMSTADT

- First ⁹⁶Ru(e,e'γ)
 production run in 2021
- First open-shell nucleus investigated in (e,e'γ)
- Measured:
 - New spectroscopic features (4 MeV entry)
 - Branching ratios $I(2_3^+ \rightarrow 0_1^+) = 7.3(45)\%$
 - Pronounced angular distribution of 2⁺₁state

$(e,e'\gamma)$ @ S-DALINAC: First Data (G. Steinhilber, PhD thesis, 2022)

TECHNISCHE UNIVERSITÄT DARMSTADT

- First ⁹⁶Ru(e,e'γ) production run in 2021
- First open-shell nucleus investigated in $(e,e'\gamma)$
- Measured:
 - New spectroscopic features
 - 96 Ru(e,e'n γ) 95 Ru
 - prompt γ 's from entry levels from GDR decay
 - new opportunities!

0.5

350

300

3

2.5

E_v (MeV)

96R11

3.5

S-DALINAC Upgrades within

Beam spot of about 100 µm (3 σ), stabilized: **500 k**€

- Stabilization of RF-system (e.g. temperature),
 3 GHz master oscillator
- Optimization of 6D emittance, streak camera station
- FUGG "SERAPHIC" approved by Res.Dept. \rightarrow DFG (A. Brauch et al.)

(e,e'f) setup @ QCLAM: **1300 k€**

- Complemented by 650 k€ FUGG, DFG → 1,300 k€ in total
- Fission chamber incl. goniometer (80 k€)
- Detectors (bunch and fragment identification) (1,220 k€)

(G. Steinhilber et al.)

E.g.: Universal streak camera, Hamamatsu, 1 ps resolution

25

nstitut für Kernphysik

SIDALINA

EL EM

EN

TS

Thank you for your attention!

TECHNISCHE UNIVERSITÄT DARMSTADT

Picture: Jan-Christoph Hartung

