Electron scattering off ¹⁰B under 180°

<u>M. Spall,</u> M. Singer, J. Birkhan, I. Brandherm, M. L. Cortés, F. Gaffron, K. E. Ide, J. Isaak, I. Jurosevic, P. von Neumann-Cosel, F. Niederschuh, N. Pietralla, G. Steinhilber and T. Stetz Institut für Kernphysik, Technische Universität Darmstadt

*Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 279384907 - SFB 1245.

17.10.2022 | SFB 1245 Workshop | Technische Universität Darmstadt | Institut für Kernphysik | Maximilian Spall | 1

Spin-M1 and Gamow-Teller (GT) resonances

- Fundamental excitation modes of a nucleus
- Spin-M1 and GT resonances are closely related
 - Spin-M1: $\Delta T_z = 0$
 - GT: $\Delta T_z = \pm 1$
- Transition matrix elements are identical in first order

•
$$B(M1_{\sigma\tau}) = \frac{1}{2J_i+1} \frac{1}{2} \frac{C_{M1}^2}{2T_f+1} \langle J_f T_f | || \sum_{j=1}^A (\sigma_j \tau_j) || |J_i T_i \rangle$$

•
$$B(GT) = \frac{1}{2J_i+1} \frac{1}{2} \frac{C_{GT}^2}{2T_f+1} \langle J_f T_f | || \sum_{j=1}^A (\sigma_j \tau_j) || |J_i T_i \rangle$$

Y. Fujita, B. Rubio, W. Gelletly, Prog. Part. Nucl. Phys. 66, 549 (2011)

Isospin symmetry for an even-even nucleus

Isospin analogue states

- Analogous states due to identical space and spin configurations
- Analogous states have a corresponding transition strength

Y. Fujita, B. Rubio, W. Gelletly, Prog. Part. Nucl. Phys. 66, 549 (2011)

Gamow-Teller quenching factor

- Quenching = $\frac{\exp. \text{ strength}}{\text{theo. prediction}}$
- Systematic reduction by ~ 50%

 Impact on current problems in nuclear structure and astrophysics

M. Ichimura, H. Saakai, T. Wakasa, Prog. Part. Nucl. Phys. 56, 446 (2006)

Systematic predictions of electroweak processes in nuclei

- Quenching must be at least a 2nd order effect
- Two-body currents (2BC) contribute to quenching
- Little is known in light nuclei and for higher multipoles

Analogue transitions to forbidden β-decay

Research focus: Magnetic transitions with higher multipolarity (M2, M3, M4)

- Study analogue transitions to forbidden β-decay in light nuclei
 - Learn more about quenching for higher multipoles

Electron scattering under 180°

 $= \left(\frac{d\sigma}{d\Omega}\right)_{L} + \left(\frac{d\sigma}{d\Omega}\right)_{T}$ $\frac{d\sigma}{d\Omega}$ $V_L \times |F_L(\vec{q})|^2 = V_T \times |F_T(\vec{q})|^2$

Transverse response enhanced by three orders of magnitude:

Superconducting-Darmstadt Linear Accelerator (S-DALINAC)

TECHNISCHE UNIVERSITÄT

DARMSTADT

180° system at the QCLAM spectrometer

180° system at the QCLAM spectrometer

QCLAM spectrometer

- Magnetic spectrometer for (e,e') and (e,e'x) experiments
- Scattering angles: 35° 155° and 180°
- Momentum acceptance: $\Delta p/p = \pm 10 \%$
- Solid angle: 35 msr
- Energy resolution: $\Delta E/E \approx 3 \cdot 10^{-4}$

- Effective momentum transfer
 - 0.90 fm⁻¹
- Target
 - 17 mg/cm² ¹⁰B
 - 2 mg/cm² Kapton

¹⁰B(e,e')

- Effective momentum transfer
 - 0.90 fm⁻¹
- Target
 - 17 mg/cm² ¹⁰B
 - 2 mg/cm² Kapton

Influence of Kapton

- Comparing Kapton and Boron spectra
- Kapton contributions can be seen easily (¹H, ¹²C, ¹⁴N, ¹⁶O)
- Recoil compared to Boron
 - ¹²C: 220 keV
 - ¹⁴N: 420 keV
 - ¹⁶O: 560 keV

Calculation of the form factor for 0^+_1 of ¹⁰B

Differential cross section:

$$\frac{d\sigma}{d\Omega} = \frac{dN}{d\Omega} \frac{1}{Q} \cdot \left(e \frac{M_{Mol}}{N_A} \frac{1}{\rho x} \right)$$
 only depends
on the target!

$$\longrightarrow \frac{|F_T(q)|_{inel}^2}{|F_T(q)|_{el}^2} = \frac{\frac{dN_{inel}}{d\Omega}\frac{1}{Q_{inel}}}{\frac{dN_{el}}{d\Omega}\frac{1}{Q_{el}}} \triangleq \frac{a_{inel}^{korr}}{a_{el}^{korr}}$$

Need events below the corresponding peaks

No need of the efficiency of the detector system

Peak approximation in (e,e') experiments

Phenomenological fit

$$y(x) = U(x) + y_0 \cdot \begin{cases} \exp\left[\frac{(x-x_0)^2}{2\sigma_1^2}\right] & \text{for } x < x_0 \\ \exp\left[\frac{(x-x_0)^2}{2\sigma_2^2}\right] & \text{for } x_0 \le x \le x_0 + \eta\sigma_2 \\ \exp\left[-\frac{\eta^2}{2}\right] \cdot \left(\frac{\gamma\sigma_2}{\eta}\right)^{\gamma} \cdot \left(x - x_0 + \frac{\gamma\sigma_2}{\eta} - \eta\sigma_2\right)^{-\gamma} & \text{for } x > x_0 + \eta\sigma_2 \end{cases}$$

Parameter: y_0 , x_0 , σ_1 , σ_2 , η and γ

Calculation of the counts

Counts: 16120

Counts: 3105

Full width at half maximum (FWHM) ≈ 208 keV

Preliminary form factor for 0^+_1 of ¹⁰B

- Preliminary calculation results in $|F_T(q)|_{inel}^2 = 4.24 \cdot 10^{-5}$
- Determination of the uncertainty is ongoing
- Measurements for lower q values are needed

Theo. model taken from Cichocki et al., Phys. Rev. C 51, 2406 (1995)

17.10.2022 | SFB 1245 Workshop | Technische Universität Darmstadt | Institut für Kernphysik | Maximilian Spall | 19

Summary and outlook

- We are able to do (e,e') experiments under 180°
- ¹⁰B(e,e') data will be further investigated
- Further q values should be measured with $E_{beam} \leq 65 \mbox{ MeV} \ (\triangleq 0.69 \mbox{ fm}^{-1}) \mbox{ for } ^{10}\mbox{B}$
- Technical improvements of the 180° system are ready for the next beam time / about to be finished
 - Calibration system
 - Sliding seal

Backup

Kapton(e,e')

70 **Target properites** Kapton(e,e') $\Theta = 180^{\circ}$ - Kapton (¹H, ⁶C, ⁷N, ⁸O) 60 E = 85 MeV2 mg/cm² Kapton -50 40 Counts 30 20 10 تعينيه والاقتصار وأماله ويدرد المراجع ورور 0 -10 +-10-5 0 5 10 15 Excitation energy (MeV)

A sliding seal for the scattering chamber

- Elaboration of an improved version
- Ordering missing or defective parts
- Creation of a 3D model
- Ordering new "Presser design"
- Assembling new sliding seal

New concept

- New concept looks promising
- Thicker rubber sealing
- Small leakage due to the gaps

Functionality of the calibration system

- Cuts of different depths define vertical scattering angle
- Peak in spectrum for each material thickness
- Horizontal scattering angle is calibrated by the rotation of the ridges around the target

New calibration system

Components

- 1. Target ladder
- 2. Laser adapter
- 3. Rotational corpus
- 4. Calibration ridges
- 5. Magnet
- 6. Hall sensor
- 7. Counterweight
- 8. Stepper motor

Count rate estimation for calibration ridges

1 ridge with

5 slits

Count rates of the commissioning beam time August 2020

Horizontal and vertical angle acceptance: ± 40 mrad

Ridge thickness: **1 mm** Slit angle: **0.5**°

Assuming a homogeneous distribution of backscattered electrons: 0.128 electrons per second per slit

17.10.2022 | SFB 1245 Workshop | Technische Universität Darmstadt | Institut für Kernphysik | Maximilian Spall | 28

Calibration

Calibration measurement is needed to:

- Reconstruct the exp. scattering angle
- Determine the location of the focal plane
 - Usually done with a sieve slit measurement
 - Various slits with known position
 - Clear assignment in the spectrum

Taraet

G. Lüttge, Dissertation, TH Darmstadt D17 (1994)

Focale Plane

+Λp

Sieve slit measurement

Experimental setup

- No dipole separation magnet
- Sieve slit mounted on a Goniometer
- Target at the pivot point

G. Lüttge, Dissertation, TH Darmstadt D17 (1994)

Disadvantage: Different experimental setup!

Ongoing development and improvement

- Continuous development
 - 2nd gen. finished
 - Stability
 - Handling
- Sieve slit
 - Horizontal 2.5°, 4°, 5.5°
 - Vertical 2.5°, 4°
 - Thickness 2.5 mm

Response of the calibration system

17.10.2022 | SFB 1245 Workshop | Technische Universität Darmstadt | Institut für Kernphysik | Maximilian Spall | 31

