

From Chiral Interactions to NCSM Observables

Tobias Wolfgruber

SFB 1245 Workshop 2022

No-Core Shell Model Toolchain

Chiral EFT Interactions

NN+3N order-by-order interactions from chiral EFT

- based on QCD symmetries with nucleons and pions as active DoF
- systematically improvable
- order-by-order allows for robust uncertainty estimates
- two main interactions currently in use
 - nonlocal NN interaction developed by Entem, Machleidt, Nosyk with corresponding 3N interaction Hüther et al. PLB 808, 135651 (2020)
 - semilocal momentum-space regularized NN+3N interaction developed within the LENPIC collaboration Maris et al. PRC 103, 054001 (2021)

Comparison: Nonlocal and Semilocal Interaction

TECHNISCHE UNIVERSITÄT DARMSTADT

nonlocal EMN

- nonlocal regularization (both long and short-range contributions)
- 3N low-energy constants (LECs) fitted to a mix of fewand many-body observables
- currently available at orders NN: up to N⁴LO 3N: up to N³LO

semilocal LENPIC

- locally regularized long-range interaction (unmodified pion physics)
- nonlocal regularization of short-range interaction
- 3N LECs fitted solely in few-body space
- currently available at orders NN: up to N⁴LO+ 3N: up to N²LO

Ground-State Energy for the Oxygen Chain

Point-Proton Radius for the Oxygen Chain

Current Status of Interactions

- both interactions show good results for ground-state energies
- significant underprediction of radii with current iteration of LENPIC interaction
 - feature of semilocal regularization scheme
 - expect improvements with
 - 2-body corrections to the charge radius operator
 - the inclusion of 3N interaction at N³LO

Post-Processing NCSM results with Neural Networks

- both interactions show good results for ground-state energies
- ▶ significant underprediction of radii with current iteration of LENPIC interaction
 - feature of semilocal regularization scheme
 - expect improvements with
 - 2-body corrections to the charge radius operator
 - the inclusion of 3N interaction at N³LO
- application of artificial neural networks (ANN) to extract converged results from NCSM calculations
 - precise predictions of ground-state energies and radii
 - more stable and consistent results than classical methods
 - robust uncertainty estimates

No-Core Shell Model

stationary Schrödinger equation as matrix eigenvalue problem

$$\sum_{j} \langle \phi_i | \mathbf{H} | \phi_j \rangle \langle \phi_j | \psi_n \rangle = \mathbf{E}_n \langle \phi_i | \psi_n \rangle \quad \forall i,$$

- Slater determinants $|\phi_i\rangle$ constructed from HO basis
 - dependency on HO frequency $\hbar\Omega$
- truncate model space by number of excitation quanta N_{max} w.r.t. the lowest-energy Slater determinant

No-Core Shell Model

stationary Schrödinger equation as matrix eigenvalue problem

$$\sum_{j} \langle \phi_i | H | \phi_j \rangle \langle \phi_j | \psi_n \rangle = E_n \langle \phi_i | \psi_n \rangle \quad \forall i,$$

Slater determinants $|\phi_i\rangle$ constructed from HO basis
dependency on HO frequency $\hbar\Omega$

- truncate model space by number of excitation quanta Nmax w.r.t. the lowest-energy Slater determinant
- convergence controlled by two parameters

- monotonously decreasing with N_{max}
- different rates of convergence for different HO frequencies

October 6, 2022 | TU Darmstadt | Institut für Kernphysik | Tobias Wolfgruber | 8

- monotonously decreasing with N_{max}
- different rates of convergence for different HO frequencies
- all sequences share the same limit

- monotonously decreasing with N_{max}
- different rates of convergence for different HO frequencies
- all sequences share the same limit

- monotonously decreasing with N_{max}
- different rates of convergence for different HO frequencies
- all sequences share the same limit

- monotonously decreasing with N_{max}
- different rates of convergence for different HO frequencies
- all sequences share the same limit

Machine Learning Approach

• previous applications: capture $f(N_{max}, \hbar \Omega)$

Negoita et al. PR C 99, 054308 (2019) Jiang et al. PR C 100, 054326 (2019)

- now: directly predict converged value from available calculations
 - include information of multiple frequencies

ANN Input Modes

Statistical Evaluation

- apply 1000 ANN
- prediction and uncertainty from Gaussian fit

- different family of interactions Maris et al. PR C 103, 054001 (2021)
- construction of evaluation samples analogoulsy to training samples
- different predictions from one ANN
- turn to statistical approach

TECHNISCHE UNIVERSITÄT DARMSTADT

Radii – ²H

Radii – ⁴He

Conclusion & Outlook

- ANNs provide robust predictions with reliable uncertainty estimates
 - more accurate than classical extrapolations
 - robust w.r.t. changes in the training data
- applicable to any nucleus accessible via NCSM
- extension to radii (work in progress) and other observables
 - challenge: more complex convergence patterns
- great potential for optimization:
 - normalization of training data
 - adjustment of topology and hyperparameters
- Knöll, TW, Agel, Wenz, Roth: arXiv:2207.03828

October 6, 2022 | TU Darmstadt | Institut für Kernphysik | Tobias Wolfgruber | 17

Thank you for your attention!

thanks to my group and collaborators

M. L. Agel, M. Knöll, L. Mertes, T. Mongelli, J. Müller, D. Rodriguez, **R. Roth**, L. Wagner, C. Wenz, N. Zimmermann

