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No-Core Shell Model Toolchain

Interaction Pre-processing NCSM Post-processingV Hs ONmax
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Chiral EFT Interactions

Interaction Pre-processing NCSM Post-processingV Hs ONmax

▶ NN+3N order-by-order interactions from chiral EFT
▶ based on QCD symmetries with nucleons and pions as active DoF
▶ systematically improvable
▶ order-by-order allows for robust uncertainty estimates

▶ two main interactions currently in use
▶ nonlocal NN interaction developed by Entem, Machleidt, Nosyk

with corresponding 3N interaction Hüther et al. PLB 808, 135651 (2020)
▶ semilocal momentum-space regularized NN+3N interaction

developed within the LENPIC collaboration Maris et al. PRC 103, 054001 (2021)

October 6, 2022 | TU Darmstadt | Institut für Kernphysik | Tobias Wolfgruber | 2



Comparison: Nonlocal and Semilocal Interaction
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nonlocal EMN

▶ nonlocal regularization (both
long and short-range
contributions)

▶ 3N low-energy constants
(LECs) fitted to a mix of few-
and many-body observables

▶ currently available at orders
NN: up to N4LO
3N: up to N3LO

semilocal LENPIC

▶ locally regularized long-range
interaction (unmodified pion
physics)

▶ nonlocal regularization of
short-range interaction

▶ 3N LECs fitted solely in
few-body space

▶ currently available at orders
NN: up to N4LO+
3N: up to N2LO



Ground-State Energy for the Oxygen Chain
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Point-Proton Radius for the Oxygen Chain
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Current Status of Interactions

Interaction Pre-processing NCSM Post-processingV Hs ONmax

▶ both interactions show good results for ground-state energies
▶ significant underprediction of radii with current iteration of LENPIC interaction

▶ feature of semilocal regularization scheme
▶ expect improvements with

– 2-body corrections to the charge radius operator
– the inclusion of 3N interaction at N3LO

application of artificial neural networks (ANN) to extract converged results from
NCSM calculations

precise predictions of ground-state energies and radii
more stable and consistent results than classical methods
robust uncertainty estimates
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Post-Processing NCSM results
with Neural Networks

Interaction Pre-processing NCSM Post-processingV Hs ONmax

▶ both interactions show good results for ground-state energies
▶ significant underprediction of radii with current iteration of LENPIC interaction

▶ feature of semilocal regularization scheme
▶ expect improvements with

– 2-body corrections to the charge radius operator
– the inclusion of 3N interaction at N3LO

▶ application of artificial neural networks (ANN) to extract converged results from
NCSM calculations
▶ precise predictions of ground-state energies and radii
▶ more stable and consistent results than classical methods
▶ robust uncertainty estimates
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No-Core Shell Model

▶ stationary Schrödinger equation as matrix eigenvalue problem∑
j

⟨ϕi |H|ϕj⟩ ⟨ϕj |ψn⟩ = En ⟨ϕi |ψn⟩ ∀i ,

▶ Slater determinants |ϕi⟩ constructed from HO basis
▶ dependency on HO frequency ℏΩ

▶ truncate model space by number of excitation quanta Nmax

w.r.t. the lowest-energy Slater determinant
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No-Core Shell Model

▶ stationary Schrödinger equation as matrix eigenvalue problem∑
j

⟨ϕi |H|ϕj⟩ ⟨ϕj |ψn⟩ = En ⟨ϕi |ψn⟩ ∀i ,

▶ Slater determinants |ϕi⟩ constructed from HO basis
▶ dependency on HO frequency ℏΩ

▶ truncate model space by number of excitation quanta Nmax

w.r.t. the lowest-energy Slater determinant

▶ convergence controlled by two parameters
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Convergence Behavior
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Convergence Behavior
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Convergence Behavior
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Machine Learning Approach

▶ previous applications: capture f (Nmax, ℏΩ)
▶ now: directly predict converged value from available calculations

▶ include information of multiple frequencies
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Negoita et al. PR C 99, 054308 (2019)
Jiang et al. PR C 100, 054326 (2019)
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ANN Input Modes
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ABS

▶ feed in raw energy
values ENmax

ℏΩ for 4
consecutive Nmax

▶ target: E∞

▶ may struggle with
large output range

▶ requires random
scaling/shifting to
prevent biases

DIFF

▶ feed in the
differences of 4
consecutive energy
values: ∆Nmax

ℏΩ =
ENmax
ℏΩ − ENmax−2

ℏΩ

▶ target: ∆∞ =
E∞ − min(ENmax

ℏΩi
)

▶ reduce output
range/scale
dependence

MINMAX

▶ like ABS, but
normalize sample
to interval [0, 1]

▶ target: scaled
accordingly

▶ normalize every
input sample
individually

▶ alleviates scale
dependence



Statistical Evaluation
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▶ different family of interactions

▶ construction of evaluation samples
analogoulsy to training samples

▶ different predictions from one ANN

▶ turn to statistical approach

Maris et al. PR C 103, 054001 (2021)

▶ apply 1000 ANN

▶ prediction and uncertainty
from Gaussian fit
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Application to Few-Body Systems
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Application to Few-Body Systems
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▶ systematic improvement with Nmax

▶ good agreement with
converged values

▶ DIFF is more accurate than ABS



Application Beyond Few-Body Systems
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extrapolation

▶ ABS sporadically violates
variational boundaries



Radii – 2H
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Radii – 4He
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Conclusion & Outlook

▶ ANNs provide robust predictions with reliable uncertainty estimates
▶ more accurate than classical extrapolations
▶ robust w.r.t. changes in the training data

▶ applicable to any nucleus accessible via NCSM

▶ extension to radii (work in progress) and other observables
▶ challenge: more complex convergence patterns

▶ great potential for optimization:
▶ normalization of training data
▶ adjustment of topology and hyperparameters

▶ Knöll, TW, Agel, Wenz, Roth: arXiv:2207.03828
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Thank you for your attention!

▶ thanks to my group and collaborators

M. L. Agel, M. Knöll, L. Mertes, T. Mongelli,

J. Müller, D. Rodriguez, R. Roth, L. Wagner,

C. Wenz, N. Zimmermann
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