8 4 Homogenization in Linear Elasticity
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Real Material: inhomogeneous, defects or nature or designed
microstructures exist on different length scales.

|deal Material: simply homogenized on a certain scale
Example: classic continuum mechanics — material point
representative material properties ~ homogenized properties of a RVE.
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characteristic scales:

L: characteristic length on macroscopic scale

I: characteristic length on microscopic scale
d: dimension of Representative Volume Element (RVE)
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L on macroscopic scale: characteristic length of an elastic body, at which the
macroscopic quantities change.

| on microscopic scale: characteristic length of an elastic body, at which the
microscopic fields change.

d: Dimension of the RVE, which contains a statistically representative
distribution of defects.

Requirements of homogenization:

| << d << L

- Decoupling of scales

- Fluctuation of fields on microscopic scale is not appreciated on the
macroscopic scale, but only the mean values.

- The gradient (L) of the macroscopic fields is not noticeable on the
microscopic scale.

- Volume V ~ d°® (RVE) = statistic representative for microstructure —
includes characteristic defects (d >> /)

MECHANICS
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- It holds also for experimental determination of macroscopic material
properties: Probes must be large enough, so that macroscopic material
properties experimentally can be measured.

- In the case of periodic microstructure: d is given through the period.

- Restrictions:

at crack tips with singularities (L — 0)
Strain localization
Nanomechanics

Gradient materials — Q ~ g’\s V%

L
05 Vew

MECHANICS
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§ 4.1Mean values &7 TECHNISCHE
Si@/=) UNIVERSITAT
%7~ DARMSTADT

Denote the stress and the strain flelds in RVE V on the microscopic scale by
o(x), e(x), where x is the local coordinate of a point in RVE. The volumetric

mean values of these fields are the stress and the strain quantity for the point
on the macroscopic scale, to which the RVE is associated to. In other words,

O macro — l/U(x)dV = o >
Vv
1 \
(=
OCW ()-MO\U’O ﬁ @ \\‘/
" )
Eraacho % SV

N
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One can formulate < o > as following, when no volume force is present:

S 1 1 7
<0 2= / (T,kﬂjkdv = = / (T;ka‘de = / [((T;ka).k — T kaj} dVv
v ), Tk vV ), v/,

1 1 1
= V /V((T;ka)_de = V [}V U;kﬂkadA = V /.]Vi,'x’,'dA

Thereby stress equilibrium oy, = 0 and the Gaul} law is applied.

The mean values < £ > can also be rewritten as follows:

] 1
<8 >= 5y /(u,Jr + uu/)dv o (u;ﬂ + uj&)dA

It means that the macroscopic fields < o >. < € > can also be reformulated

as integrals along the boundary of RVEs 0V:

T T
<(Tjj>:—/ tix;dA <:or>:—/ t © xdA
V oV V oV
T T
< € Ejj >= — 2V / (U;nj -+ an;)dA < E >= W (U @N+NX U)dA

(4.1)
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In fact, the Gaul} law can only be applied when the fields can be
differentiated. But it can be shown that the last two equations hold also for
the cases of inhomogeneities with coherent interfaces.

V<O’,‘j >—/O’,‘jdV—/ (T,'jdV—F/ O’,‘jdv
JV J Vi J V>,

_/ t,x,dA+/((2) t1)x;dA

2V < ¢gj > / / unj+uj dV
Vi Vs

= [y (uin; + uyin;)dA+

+/ {(ufz) — uf”)n,— — (uj(z) — ujm)n,} dA
JS

For coherent interfaces S it has t( ) = (1) and ufz) = uf”. It follows that
Eq. (4.7). It should be commented that the equations (4.1) hold also for

cracks and holes.

MECHANICS
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Comments:
- Discrete phases: Volume parts V,, (o« =1.2.....n) with E,,

Fid

1 L " V. T _ ! —
< o >= v /VcrdV — ; Vv /va odV = ; VAR JF! odV = ;c” < o >,

where ¢, = V., /V of the volume of the a phase, and < o >, = fv odV
are the mean values of the o phase. It is commented that > ¢, =1.

Likewise,
n

<e>=) Co<e>,

a=1

MECHANICS
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§ 4.2 Effective elastic constants B TECHNISCHE

UNIVERSITAT
DARMSTADT

Micro scale:  o(x) = E(x) : ¢(x) gij = Ejjkizk

Macro scale: <o >=FE":<e> <o >=Ejy < en >

Hill condition | Mean values of strain energy densities must be equal !

< &jj » Ejj-ckf < Ekl >

T T
<U>:<2 iEijkick >—§

Insertion by Ejjcy = oj and E; ikl < €l >=<0jj > leads to

< gjjgjj > = K Ojj >< §jj =~

energy denstiy on the micro scale =energy density on the macro scale

MECHANICS
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The difference between the mean values can be expressed by the fluctuation
fields &y, &
ETH — Jj]'_ < JH :--;‘, gu — EU_ < Eu >

From the first equation,
< Ojj >=< 0jj > — << 0jj >>=< 0 > — < 05 >=0

Similarly, one has < £; >= 0. In use of the Hill-condition, one can prove that
the fluctuation fields provide no work. In other words,

<O E>=<0 ><E> or < Ojjgjj >=< gjj >< &jj >,
and that
I . . 1 . B
< @ ZE}:{J}Z{E}:—/ uiidA = 0. (4.2)
V Jav
inwhich U, = u— < &5 > x;, | tj = (Gk— < oK > )Ny

MECHANICS
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(
—
E( )()

.'/ :"

.\\ \I
] /

Micro (inhomogeneous)

<O €E>=<0 ><E >= —

>

E*

Macro (homogeneous)

/ UitidA = 0.
oV

in which El,f: Ui— < gjj = Xj, %;: ((’J‘;k— < Ojk >)ﬂk.

MECHANICS
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In other words, U; = uj— < 55 > x; and t = (ojk— < o >)ng are two possible
sufficient conditions, which ensure the Hill condition. — Two possible BCs
for RVE

a) linear displacement on 9V of the RVE

0 20
Eii%s Ejj

u, = — const., on oV

One can calculate < g > according to the definition of the average strain,

=7 - =NCY
Jite 1

.-I
— -0 _
1 1
— Wgﬂ /x”dVJr 5V kaxk__,-d\/

1 1

1 o 1 g0 _ .0
2 fkak} + 2 Jk(&“ - 251.! T35 2 i = Fj Us

MECHANICS
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The average strain theorem:
Assume u;(x) is continuous in RVE and u; = e:}j?xj on the boundary of RVE with
an arbitrary constant tensor 53. Then

<gj>=c, of  <e>=¢g’

- Strain on the macro scale is known in this case.

Ux; into OV in Eq. (4.2) shows that using this linear

- Replacement of u; = i
displacement boundary condition ensures that the Hill-condition is

automatically fulfilled.

- For numerical determination of E* this boundary condition is suitable.

Given the components of ::fj' the stresses at boundary can be

determined and thus the mean value of the stresses.

MECHANICS
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b) Uniform traction on gV

S| 0 _
ti = ojnj, oj =const. ondV

The mean stress < o > can be calculated through Eq. (4.1)1,

< Tjj = %Lﬂjjdv — %/gv I;de.fﬂ.

1 4 / 1 5 /
= — i nex;dA = —o; X; dA
V ik iy | V ik v .

T o 0 0
— v 7k véjdA: Fkéjk:grj

™\

MECHAMNICS o
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The average stress theorem:
Assume oj; = 0 in V (no volume force) and t; = o'n; on OV with arbitrary

i
cré? — const.. Then

<oj>=o0). o  <o>=g0"

- Stress on the macroscopic scale is known in this case.

- Hill-condition is fulfilled automatically.

- It is suitable for numerical homogenization: Given a,? the strain ;(x) or
the displacement at boundary can be determined, and thus < ¢; >. From
< ojj >= Ejy < ¢j > the effective stiffness tensor £, can be
determined then.

MECHANICS
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Intentionally one introduces the so-called Influence tensor, which is the
normalized quantities of the solutions of boundary value problems a) or b):

—

E"=<E:A>

b) <e>=<E':6>=<E":B:0">=<E":B>o’=(E")":0°

_:..

N

E* =< E ':B>""

420 z (4.4)
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Comments: E¥=< = A7 E\* :Z§4.-& >

1

The macroscopic property E* or (E*)~! are weighted mean values!
Attention: E* £< E >, (E*)™' A< E~' >

For a RVE both of the boundary value problems should lead to the same
results of effective stiffness tensor. The boundary conditions should
play norole.

It serves as Test for the quality of RVE.

<e>=<A:e’ >=< A >: <% Onthe other hand, one has from the
average strain theorem < ¢ >= €Y. It follows that

CR)= ARNE®
gy =LAT)=<A0:60

< A>=|

Likewise, the following equation holds — 5
., L <=7
<B>=1 o= Bw):Q
<y )= <BY:( =< <
Approximations of A and B lead to approximation for E*. f: e

5

MECHANICS
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§ 4.3 Multi-phase composites B, TECHNISCHE

/=) UNIVERSITAT
i DARMSTADT

Without general restrictions we consider a 2-Phase material: Matrix M with
E\, = const. and inhomogeneity | with E; = const.. It follows that

1
E"=<E:A>= v f E(x) : A(x)dV
v
Vi 1 V, 1
= Ey——— AdV +-E—— | AdV
MYV Uy LS TRV Y,

— EMCMAM — E;C;A; -
where ¢y = va C| = VJ are the volume concentration of the matrix and the
Inhomogeneity, respectively. 0S5 = CM<° nt X425

LA7 = A7 tGAZ

MEC HANICS o
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Introduce Ay =< A >= L AdV, A =< A > = l AdV.
Vi Jv,, Vily, _T-¢ A
It can be obtained from < A >=cyAy +cA =1. ~— CMAM’ 1-G T

Thus

E" = Em(l - C.'ﬁvu) + EiciA; = Em + Ci(E) — Epm) @ A

- Itshould be noted that: < & >=<A: ¥ >=< A>;: P = A/ : 0
- Only the influence tensor for one phase is required.
- For a n-phase material one requires influence tensors of n — 1 phases.

- Similarly for the boundary type b):

E* = [(Ew)" +c(E" — ") : B h

(1) (0t (-4
W o (n-!) n-4)

N 1 B -
_Ev(r- EM t (:T(tl'L_M\A1+" tG (& -[AL)/AI
RN \/—”———ﬂ PMSPS

MEC HANICS o
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§ 4.4 Voigt/Reuss Approximationen B TECHNISCHE

" UNIVERSITAT

Constant strain approximation (Voigt, 1889):

Assume the strain field in boundary value problem a) is homogeneous. In

other words, from g(x) = const. = e =< e >inV,one has A = I. From the
general solution (4.3), one has N ¢°
4 L €R)
EVoiqt =<E:A>=<E> J -

0
= D 2 &
It means that the effective stiffness tensor is simply the volufme average of
inhomogeneous stiffness in the system, according to the
Voigt-Approximation. For a 2-Phase Material, it holds

EVoiqt = CMEM + CIE,

where cpy, ¢ is the volume concentration of the matrix and inhomogeneity,
respectively, and cyy =1 —¢.

MEC HAMICS o
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When both phases are isotropic, the effective stiffness tensor will hereby also
be isotropic Eto’:st = E Y Gy

Kvoigt = CmKm + CIK), IVoigt = CMmim + Cify

where Ky,. K, are the bulk modulus of the matrix and of the inhomogeneity,
respectively. And . 1y are their shear modulus.

It should be noted that the effective elastic constants Ey,,, and vy, are not
the mean value of the corresponding quantities. They should be calq ulated

from K _. . and u . . through the following equations

Voigt Voigt

£ _ OK™ i1 | s 3K* — 21

3K+ 1 T 23K+ i)

!/ /

kg £l
/‘Q:/Pu"‘)ﬁz

MECHANICS
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Constant stress approximation (Reuss, 1929):

It is assumed that the stress field in the boundary value problem b) is
homogeneous, i.e. o(x) = const. = a° =< & > in V. It follows that B = I.
From the general expression (4.4) one has

e
o
v":’fg’ Ejoyss =<E ' :B>T'=<E ' > = "L,Z £
e D 29\495
e

Thus, in this approach, the effective compliance tensor of the heterogeneous
material is the volume average of the compliance tensors of the phases in
the material. For a 2-phase Material,

(EEeuss}_1 — CME."::I“I + C’E-’_1

If the two phases are isotropic, according to the Reuss-Approximation, the
effective elastic properties are also isotropic: 4e
I
T _Ctm  C T Cv  Cj

— 4+ — 1e2

Reuss Km  Ki© Hpeuss MM U L=
gl
R A%t

MI{HANIE‘; | |
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Comments: The Voigt and the Reuss Approximation presents the upper and
the lower bound of the effective estimations.

Proof: E and E~! are positive defined. In other words, it holds for any arbitrary
admissible straine— < e >: L QIEiLSy (EF S
(e—<e>):E:(e—<e>) >0 /

e BE:et<e>E<e>-2<e>E:e >0

——

Taking the mean values of the previous equations,
<e:BEie>4+t<e><E><e>-2<e><E:e>>0
~ N\

<e> B <e>+<e><E><e>-2<e><o>>0

B
<e>E <e>+<e><E><e>-2<e>FE:<e>>0
: BT o
<SHEES (s> — <£>5E ' <s> >
where the Hill-condition < € : E: € >=< e >: E* :< € > and the definition
<E:e>=< o >=FE":<e>was applied. Hence,

¥, *
<e>(«E>-E)<e>>0 — <E>=E);>F K""'f)*>k
<ES=zEY _~7 Mboige > HE

MECHANICS
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In other words, the Voigt Approximation leads to the upper bound.

Likewise,
(6—<o>):ET: (6—<0o>)>0

and similar derivation leads to
<o>d<Eio (BN <o >>0

or,

<E>"'">(E")", dh. <E7' >T=|Ehpyes < E

The Reuss Approximation represents the lower bound. In summary,

Reuss — — ™Voigt ‘<keu<§ - Volﬂt

Pragmatically, one uses the mean of the Voigt and the Reuss approximation

for the estimation :

E" ~ E( ;or'gt + EE’eUSS)

MECHANICS
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§ 4.5 Dilute distribution approximation (DD) B rechiscre
Ji@/=\ UNIVERSITAT
90’ DARMSTADT

Assume:

- small volume concentration and distributed — defect interaction is ignored
- every defect feels only the external loading

0 0 — — +— -= )
// O-Ij?gfj b*-t'v\* CI'(EI LM) - 0 .0

ol e
= Elt @(E-E) By %«

effective problem

MECHANICS «
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-};:_)k = E t CI.(E -EM): a

Ellipsoidal inhomogeneities (2 Phases, ¢; << 1) -'* = ‘r C_L(E LM) Br

O'O 50

i+ i £ = '.<5°
i /m Q.
LN /// Al L]- '|'S E "(tI’LM)J UU EU

24

v, 0
) :’—BI 0 effective Problem

B BI-E AIEM4

~

MECHANICS .
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In the subsection 4.3 we have obtained the general expression for E* in linear
displacement boundary a)

E*" =Ey + C,'(E,f — E,u) A

where A, is the mean value of the influence tensor A in the inhomogeneities
in the effective problem. The effective problem according to the DD method
Is exactly the problem, which we have considered in subsction 3.6. The

influence tensor A% is given in Eq. (3.3). It is known that A is uniform in the
Inhomogeneity, i.e.

i, | 11

A :Af&' — [i+8 | EMI I (tf_EMjJ
where S is the Eshelby Tensor of 4th. Note that S depends on Ey, and the
geometry of the ellipsoidal inhomogeneities, because the matrix material in

the effective problem has E,,. Insertion of A, into the general expressions
leads to the effective stiffness tensor . Ew &1

l 1
E® = Ey + ¢/(E — Ey) : [l +S:E;: (E - Ey) (4.5)

FUNCTIONAL

MECHANICS .
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—1
E;5) =Ew+ci(E —Eu): |1 +S:Ey": (E —Ey)]

Forc, =0, EEE} — Ep. Forcgy = 1, EEEJ £ E,. It should be commented that
the DD approach is valid for ¢; << 1.
Linear dependency on c,.

Note: even if both phases are isotropic materials, the effective E* can be
anisotropic, due to the anisotropy of the geometry of the
inhomogeneities.

Similarly, one has for the boundary value problem b)

—1
£ — {E; +ci(E'—E;"): B;}

where
1
B/ =B =E AT E, =B [I+S:E (B -Ey) -E

i *':EJ' 7& E*[b}

IAECHANICS
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- Isotropic case: E,. Ey, are isotropic, and the inhomogeneities has
spherical shape. For spherical inhomogeneities,

T , 1 3Ky , 6(KM -+ Z;LM)
Siiki = a=0ji0k+ Bl — = 0jioky), = . B =
i = g 00kt Pl =300 = g 7S B3Ry + Ay
Insertion into Eq. (4.5) leads to
(Ki — Km)Kwm «(a) (£tr — fom)fim

KDD = Ky + ¢ = lUpm + Cy

: L
'K + a(Ki — Km) VoD fm =+ B — pm)

It can be seen that Kj,. 115, depend linearly on c.

) ‘

— _ = \.[= _. -1
b;;‘)‘ Emt G <El' tﬂ)"LL"'S’ t'w\"‘ (EJ_-E—M)] k* _

A
Em = (3Kkm, o)  12(4.4) K +(L(K1'I‘M)4_M4 (krkm\
Fr =03k, oM:) s2(o,f) -kt (ke - kM)KM

Kkmt Ak -¥n) -¥M)

MECHANICS «
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In the case of hard particles (K; — oo, 1y — o) and incompressible matrix
2
(Ky — oo, i), it holds that « — Tand 3 — =

z
From the last two equations, one has
«(a S «(a
,LLDE.)) — (1 + EC;);LM, KDEJ) — OO
x(a) (kr-Km)km oo
ol= 3K __3 =/ <3 =kmta g Km "'d(kl"\‘p\)
FKint dm 3*‘*5” 7 K 4 (e~ Pan)
@ 6 (g r2Mw) _ 6 +91“g\) 2 P ZMn T an-+ B (M7~ lhw)
) 50 47ﬂ ) E =My + ¢ = )
T Bea-p)
=MM+C1 é‘“m S
-~
=(4+2@)uy 5 (.,

MECHANICS «
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8 4.6 Mori-Tanaka Approach (MT) B TECHNISCHE

Sim =) UNIVERSITAT
AT DARMSTADT

—* — .
E'=EntT G (E;—Bn):
In general, (x), o(x) have fluctuation in the matrix around the rrnz:anI\'.a'aIu?E::A'-L
Vogt: Al

3 =< € +£(X), o =<0 +a
(X)|m =< & >m +&(X) (X)m =<0 >m +F(X) DD*AI’/‘\'A‘;

T. Mori and K. Tanaka have developed in 1973 a new approach to evaluate the
effective stiffness tensor. The basic idea is to consider the interaction
between the defects/inhomogeneities through their influence on the mean
values of the fields in the matrix ("mean field theory"). For the MT approach,
the following assumptions or requirements should hold:

- Defects feel only the homogeneous field < € >y and < o >u. They do

not feel €Y or o.

- < & >y and < o >y depend on other defects.
- Defects are isolated in the matrix.
- Fluctuations induced by defects decay in a sufficient distance.

S

MECHANICS o
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E'=EwtG(ErBn)'A 0 50

effective problem

A\

MECHAMNICS o
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In order to compare with the DD approach, the loading in the effective
problem is not €°, o, but < € >y, < o >u.

In the case of 2 phase composite with ellipsoidal inhom.ggeneities,

0 0 27M~‘£1i° €= A1=(€7M iy
e _ i i e o +S'E"*(E’F)]
B GER o R[S
1‘ I\

< E >M.< O >\

effective Problem

MECHANICS -
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In the general expression E* = Ey + ¢/(E; — Ey) : Ay, Ay denotes the relation
between strain in the inhomogeneities and the real external loading °, °.
For the boundary condition a) A, is defined through < € > = A, : €%. By the
concept of equivalent eigenstrain, one obtains in the effective problem the

relation between < £ >; and the effective field < £ >
< e>=A" Ee>=y
where A< is given in Eq. (3.3). Moreover, one obtains from
L E>S=CC<E>TCy <E>Mm
]
<e>m=—(<e>—-C<e >
Cm
1 20
{E};ZC—A, (<e>—C<e>)
M

—
- CM(AIF’“)_1 < E>HC < E > =< £ >

—  [em(AP) T+l i< e >=<e > MT
— < & = [C;l -+ CM(AI}::I_‘]]_‘I < E > co | ¢
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From the average strain theory, one has: < ¢ >= °. It follows that

<e>=A" &b

where
A" = el +cem(AT)

One can replace A/ into the Eq. (3.3) and obtain

1
A":v”r = {C,rl + Cm [L—F S: E.'"._41 : (E,' — Em)]}

vW Wy

1
AMT — [w cuS : E;' : (E — EM)]

K= Me=[1 +5:5,1(E~E )]
Note that the only difference between AM" and AP in the DD approach exists
only in the factor ¢, in the second term. Thereby S depends on Ey, and the
geometry of the ellipsoidal inhomogeneities, because the matrix material in
the effective problem has Ey. Insertion into the general expressions leads to:

E;'? — Ey +ci(E — Ey) : AMT
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E\?) = Epy + c/(E — Ey) : AT

AMT _ [|+<:Ms E, -(E,_EM)} B

Comments:

- In constrast to the DD approach, the MT approach is valid for both

extreme cases:

cr—1: EEJT = E;
- Nonlinear dependency on c;.

- E;;r is independent of the fact, whether < € >y, or < o >, is used in the
effective problem.

)
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£, 2 (3K, My
EM( ) —Epm + C,'(E,' — Em) AMT Elé:(g (ﬁﬂ /QHT)

»
AN — [|+cMs E,' :(E — Ey) m—Gﬁmey

S = (3 f
- For the special case: isotropic E;. Ey, and spherical mhomogeneltl )

(Ki — Km) K N

K =K
MT M+ CIKM o= c) (K —Ky) 31}34:4-}{}4
(1 — 1) p- £t
(e = pim + Ci e 5(Fku+4My)

piv + BT =) — pm)

where «. 3 depend on Ky,. 11, and take the similar formular as in the DD
approach. It is worthwhile to mention that Ky,;. ;- do not depend
linearly on ¢, in contrast to the DD method.

Particularly for hard particles (K, — oo, 11y — o0) in incompressible

2
matrix (Ky — oo. uum), it holds o« — 1and 3 — c: From the last

equations, X S C
Hmt — (1 21 o

).MM-. Kyt — o0
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§ 4.7 Self-consistent approach (SC) B TECHNISCHE

Both the DD and MT methods are suitable for small volume concentration of
isolated defects. In cases like polycrystals, where the matrix phase and
inhomogeneities are difficult to differentiate, both the DD and the MT
approach is inappropriate. The basic idea of the self-consistent method is to
smear the whole environment around the defect to be an effective matrix.

w N
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The SC method holds also for cases, where there is no distinct matrix phase.
The formula in the SC method are similar to those in the DD method, except

that in the effective problem the matrix W|th E\ is replaced by the unknown
OYd'no“ 50||A3<|or\

effective stiffness E*. 40 0

I:X’ Fm+(‘(ET tM A_(_/(//(

effective problem

N
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The only difference from the DD approach lies in the fact that in the influence
tensor App the tensor Ey must be replaced by E*:

el al

A =[1+8":(E") " :(E—E)]"

where S* has the similar structure as S in DD does, but depend on E* (instead
of Ey), because in the effective problem, the stiffness tensor of the matrix
phaseis E*.

Note that A?“ is a function of E* and thus of E.. Replacement into the
general formula leads to the governing equation for the unknown EZ.:

Eic = Ey + c/(E/ — Ey) - A© (4.6)

MECHANICS
Micromechanics | Mechanics of Functional Materials | FB11, TU Darmstadt | Prof. Dr. Bai-Xiang Xu | WS2020/21 | 40 FUNCTIONAL " |

MATERIALS



T2 (3K, M0

s Eic = Ev + i(E/ — E) : Af° Er2(3 L, ,’Luz)
A,ISC _ [I 1+ 8- (E*)—1 : (E,r . E*)]—1 _JO QG@ Qk&)
Comments: 5*4 e, ﬁ*)

- Isotropic case: E,. E), are isotropic and spherical inhomogeneity

One obtains first §* through insertion Ky — K&z, i — p15c into S,

N N LYY o SKse o 6(Kse +2psc)
ikl — « 35l]5k-’+.-*9 ([Uk-’ 35-']5“)? . = 3K§C 4+ 4#;(:’ -3 — S(SKEC _}_4}”;0)
G (kL -3k G (k- |
kY =3Kn a = M)T. ‘I*l 4]' +
1+ o k) |<* TSV
G m
¥ C lex —ku 4 G Cz _,A == M
c‘t* —k“?. K Tk T K-k "*—VM \‘*'kl 1“‘*_"1 F'*'W k"kj_
_KY - k¥ — kst k¥ f40*
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Due to isotropy, Eq. (4.6) leads to

c c 3
0= 4+ .
0 _ M Ci ~ 6(Kse + 2pgc)
Hse =t pge — M Opge(3Kge +4uge)

The equation is symmetric with respect to the matrix and the inhomogeneity.
In other words, a distinct matrix phase is not required.

Particularly for hard particles (K, — oo, 1 — oo) and incompressible matrix
(Ky — 00, 11p), one has

2#M
2 — 5C,f

*
fisc —

2
Even when ¢, — £ it holds already &, — oo(= su). This is the so-called

"Percolation effect". In the reality the microstructure forms already bridges
even before ¢y < 1.
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Another special case is spherical cavities (K; — 0, ;4 — 0) in incompressible

matrix (Ky — oo. jum). The effective constants, according to the SC approach
are

K* 4,1;5;4.,4(1 — 2C,r)(1 — C,r) P 3,1L-M(1 — 2C,')
SC — a(3—c) ; Hsc 3_¢

1
Forc, = oL K. — 0(= Kj). Hereby the percolation effect appears.

o ’
(9/09 O/O

@)
\0@
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8§ 4.8 Differential scheme (DS) G0 TECHNISCHE

UNIVERSITAT
3 DARMSTADT

Basic idea: Embedding the inhomogeneities into the matrix by infinitesimal
steps.

0 -0 0 -0
e} o), ) 00, 0
/4
DD Appr.
e
Ei.".'f —cdV 4+dV = (f&i + dcy)V
N\
dav dey

dV(1—c¢)) =Vd =
S — ( C’} “ = V T—c
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Matrix: E*(¢;); Inhomogeneity: % E,

— E"(¢) + de) according to the DD approach. EM &
ENTrref M E -
It follows that E;z Ew +G (B rM)'Llf?‘sﬁw (Ex EM)_‘
dv
E'(cj+dc))=E"(c))+ —(E —E"(¢y)) : 1 +S7: (E (¢)) " : (E —E*(c))]"
N — U T EX¥en 3
where S* depend on E*(c/) and the geometry le E||I[EDI S.

We denote the change of the stiffness tensor by dE*, and apply the relation

d‘-f B 1{1_[:1:,' The last equations lead to Ml E*(CL*ACI)’E*CQ)
%h: dey X _ N —1
dE* = — [E, —E*(c))): 1 +8 : (E*(c))) " : (B —E*(cy))]
or
B 1 E—E() 1+5: (E@) " (B—E@)]"| 47
de; T—¢
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Comments:

- The last equation represents the nonlinear differential equation for E*
and c,.

- The stiffness tensor of the real matrix with Ey, appears not directly in the
differential equation. But it appears in the boundary condition of the
differential equation

E*|c,—0 = Em

- It should be commented that in general the DS approach holds for the

extreme cases.:

- The DS concept is difficult to be applied for multiphase materials.
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- For the special case of isotropic E;, Eys and spherical dV,

one obtains first $* by replacing Ky — K*(¢), pm — p*(cy) in S,

T 1
Siki = " 500 + 8" (g — 7 00k)
o — 3K*(c1) g« _ B(K™(C1) +2p7(cr))
3K*(ci) +4p(ci)” S(3K*(c) +4pu(cr))

For the particular case of hard particles (K; — o, iy — o) and
incompressible matrix (Ky — oo, up), one has

dp” T 5, )

dc, :1_C,§aﬂ : 1 =0 = pm _
Al ¥ Kl

. iy, e k-&(k’(“ )
- K= 5/2 1 }&’L, =
(1—c))¥ wro=ly
4(4”‘ ¥
) =g“d)"" )
Note that for¢; — 1, u* — <. [l AL

dE* 1

de,  1-—¢ (B —E"(c) : 1 +8": (E*(c) ™" : (B —E*(c))] ™
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Effective Young’'s modulus of a plate containing isotropically distributed
circular holes

E*/E A O : experiment
B DD : dilute distribution
MT : Mori-Tanaka method
SC : self—consistent method
. DS : differential scheme

0.5¢
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§ 4.9 Cracks and holes % TECHNISCHE

St UNIVERSITAT
-2 DARMSTADT

Homogeneous matrix with cracks and holes E( ={E £ 'A\> X ’-<L" 87

< Ejj M= L (Ui —|—U_jj)dv = L [ f Iin; + ujn;)dA — (uin; + Ujﬂj}dﬂ]

2V Vi ' ‘ 2V Jav Ve

>—=——g (W; N +M5’\)0(A

From Eq. (4.1) one has / (uinj + ujn;))dA = 2V < g5 >.
J av
The last equations lead 10

1

— < Ejj M= ZV
M

2V < Eij > — / (U,ﬂj -+ Ujﬂ,‘}dﬁ]
AV

— < Ej>=CMm <Ej>Mm +2V (U,ﬂ_;‘ + Ujﬂj)dﬁ
oV,

——
L <Ciy >
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For matrix with cracks, 9Ve - T =T +T " undcy = 1.
One obtains from the last equations

1
< f.,;J; >=< L;j >M _|‘ AU n}- ‘l_ Auj-

\f—'N L& 7.
where Au; = u” — u denotes the displacement disconiti-
nuities along the crack surfaces.

In summary,

lgjr=Cu<cgj>m+ <gj> 0O Cuy<cgjo>u=<cgj>—<¢gj>c

( 5V (uin; + u;n;)dA for cavities with boundary 9V,
< &jj Zc—= g 1 Ve
o / (Aun; + Aujn;)dA for cracks with boundary I
\

(4.8)
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The mean values of the stresses in a matrix with cracks and holes can be
further considered. Since no stress exists in cracks,

<O >=Cy < 0 >
Particularly for Eyy = const. one has < o = Ey; :< & . It follows that

<J>:&¢EM:<E>M

Insertion of cy < gjj >y=< ¢ > — < gjj >¢ leads to

<o>=Ey:(<e>—<e>g) of <e>=E, :<o>+<e>c
\ \

\ AN
e LGS 7
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In the case of linear elasticity, one can assume that the displacement along
the crack and on the hole surfaces are proportional to the loading on the RVE,
and thus to the average strain < ¢ > or < o >. Thus

a) <e>=D:e"=D:<e>
b) <e>=H:0"=H: <o >

where D and H are kind of influence tensors (4th order), which depend only on
the matrix material and the geometry of the defects. Through D and H one
has the following general expressions for the effective elastic properties of
the material with cracks or holes:

7207 _ o{A
1/ SR s
O QD %7 < >c’v£°,<i 7
W NGO <T> , <Gy Q40>

C
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BC a) (§>C= DL{7

<o>=Ey:(<e>—-—<e>)=Ey:(I1-D):<e>

= E* = Ey : (1- D)

It is notable, that D indicates the decrease of stiffness due to the presence of
cracks and holes (Damage).

BC b) <€>-=H:<0>

<:z-s>:E,.;,,ﬂI <O >+ <€ >p= (EA}1+H < o>

(E*)

S E* — (E,j' + H) -

The tensor H implies the increase of the compliance due to the existence of
cracks and holes (Softening).

Using the various approximation methods, such as DD, MT, SC, DA methods,
one can determine also H and D, respectively, for each crack and hole. This
leads to approximation of the effective properties of the material.
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