
l4_prot_e.fm 1 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Communication Networks II

Prof. Dr.-Ing. Ralf Steinmetz

TU Darmstadt - Technische Universität Darmstadt,
Dept. of Electrical Engineering and Information Technology, Dept. of Computer Science

KOM - Multimedia Communications Lab
Merckstr. 25, D-64283 Darmstadt, Germany, Ralf.Steinmetz@KOM.tu-darmstadt.de
Tel.+49 6151 166151, Fax. +49 6151 166152

httc - Hessian Telemedia Technology Competence-Center e.V
Merckstr. 25, D-64283 Darmstadt, Ralf.Steinmetz@httc.de

Transport Layer - Protocols

l4_prot_e.fm 2 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Scope
KN III (Mobile Networking), Distributed Multimedia Systems (MM I and MM II),

Telecooperation II,III. ...; Embedded Systems

L5
Applications

Te
rm

in
al

ac

ce
ss

Fi
le

ac
ce

ss

E-
m

ai
l

W
eb

Pe
er

-to
-

Pe
er

In
st

.-M
sg

. IP-Tel.

Application Layer
(Anwendung)

SIP &
H.323

L4 Transport Layer
(Transport)

Internet:
UDP, TCP, SCTP

N
et

w
. T

ra
ns

iti
on

s

Se
cu

rit
y

A
dd

re
ss

in
g

Transport
QoS - RTP

L3 Network Layer
(Vermittlung)

Internet:
IP

Network
QoS

L2 Data Link Layer
(Sicherung)

LAN, MAN
High-Speed LAN

L1 Physical Layer
(Bitübertragung) Queueing Theory & Network Calculus

Introduction

Legend: KN I KN II

l4_prot_e.fm 3 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Overview

1. Transport Protocols and some History
1.1 ISO-OSI Transport Protocols

2. Internet Transport Layer (in General & Addressing)
2.1 Port - Addressing Concept
2.2 Port - Link to Application

3. UDP - User Datagram Protocol

4. TCP - Transmission Control Protocol
4.1 TCP in Use & Application Areas
4.2 TCP Characteristics
4.3 Connection - Addressing

5. TCP - Protocol, PDU Format, Segments
5.1 Segments, Fragmentation (and Reassemblation)
5.2 Protocol with Flow Control

l4_prot_e.fm 4 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Overview

6. TCP: Connections & Management
6.1 Connection Establishment
6.2 Connection Release
6.3 Connection Management Modelling

7. TCP - Foundations
7.1 Flow Control
7.2 Timer Management
7.3 Congestion Control
7.4 TCP - Further Comments

8. Stream Control Transmission Protocol (SCTP)

9. Further Development of Transport Protocols

l4_prot_e.fm 5 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

1. Transport Protocols and some History

Internet

• UDP = User Datagram Protocol
• TCP = Transmission Control Protocol
• SCTP = Stream Control Transmission Protocol

ISO-OSI
• practically irrelevant
• but show overall design space

Other

SMTP HTTP FTP TELNET NFS RTP
SCTP

TCP UDP

IP + ICMP + ARP

WANs
ATM, ...

LLC & MAC
Physical

LANs, MANs
Ethernet, ...

l4_prot_e.fm 6 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

1.1 ISO-OSI Transport Protocols

ISO (International Organization for Standardization)
http://www.iso.ch/
• is the world's largest developer of standards. Although ISO's principal activity

is the development of technical standards, ISO standards also have
important economic and social repercussions. ISO standards make a
positive difference, not just to engineers and manufacturers for whom they
solve basic problems in production and distribution, but to society as a whole.

• is a network of the national standards institutes of 147 countries, on the basis
of one member per country

Open systems interconnection OSI
• communications standards

taking
• a practical view:

• irrelevant today
• never got sufficient support with respect to implementations etc.

• general view:
• provides for an overall classification of schemes
• shows overall design space

⇒ we take a short look at them in a general manner

l4_prot_e.fm 7 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

ISO-OSI Transport Protocols & Network Services

L4 protocol depends on the quality of the L3 service (NS network service)
• Network type A:

typically CONS (connection oriented network service) on LANs
• network is RELIABLE
• network recognizes data loss as an error
• errors are displayed to the user(N-RESET) i.e. acceptable rate of the errors
• minor (for the user acceptable) error rate
• network NEVER duplicates or manipulates packets
• order of sent packets is ALWAYS maintained

• Network type B:
typically CONS on (old) WANs

• like type A, except
• REMAINING ERROR RATE (for data loss) IS NOT ACCEPTABLE

• Network type C:
typically CLNS (connectionless network serv.) on WANs

• network is UNRELIABLE
• errors due to losses, duplication and manipulation of packets, as well as

faulty packet sequence errors possible
• errors might remain undetected
• transport protocol has to / should compensate for this

l4_prot_e.fm 8 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

ISO-OSI Transport Protocols: Classes

Transport protocol classes
• 5 classes: ISO OSI TP0..TP4

Proto-
col

Class

Net-
work
Type

Network Properties Name

TP 0
A

Acceptable error rate
Acceptable rate of displayed

errors

Simple class

TP 2 Multiplexing class

TP 1
B

INacceptable error rate
Acceptable rate of displayed

errors

Basic error recovery

TP 3 Error recovery and
multiplexing class

TP 4 C
INacceptable error rate

INacceptable rate of displayed
errors

Error recovery and
multiplexing class

l4_prot_e.fm 9 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

ISO-OSI Transport Protocols: Classes (2)

Class TP 0: simple class (A)
• mechanisms for connect and disconnect
• segmentation / reassembly
• no error, sequence or flow control
• no expedited data

Class TP 1: basic error recovery (B)
• class 0 including additional error recovery
• error recovery masks N-RESETs

• TPDU numbering
• TPDU storage until ACK
• after N-RESET: resynchronization

• expedited data optional
• important data for example have a higher priority
• i.e. preferred processing before current data is processed

l4_prot_e.fm 10 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

ISO-OSI Transport Protocols: Classes (3)

Class TP 2: multiplexing class (A)
• class 0 including additional multiplexing capability
• MULTIPLEXING: several L4 connections on one L3 connection
• flow control optional
• expedited data optional

Class TP 3: including multiplexing and error recovery (B)
• class 1 and 2 functions combined
• i.e. error recovery, expedited data, multiplexing

Class TP 4: error monitoring and recovery(C)
• detects and recovers

• TPDU losses and TPDU duplication
• sequence errors

• flow control
• multiplexing
• splitting (one T connection uses several N connections)
• expedited data

l4_prot_e.fm 11 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

ISO OSI Transport Protocols: Model

Based on connection oriented network service

TS - User

T.CONNECT.

T.CONNECT.

N.CONNECT.

T-L N-L T-L

request request

confirm

TS - User

N.CONNECT.
indication
N.CONNECT.
responseN.CONNECT.

confirm

N.DATA.request
(CR-TPDU) N.DATA.

indication
(CR-TPDU)

T.CONNECT.
indication

T.CONNECT.
responseN.DATA.request

(CC-TPDU)N.DATA.
indication
(CC-TPDU)

l4_prot_e.fm 12 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

ISO OSI Transport Protocols: Model (2)

Based on connectionless network service

T.CONNECT.

T.CONNECT.

request

confirm

N.UNIT_DATA.

(CR-TPDU)
N.UNIT_DATA.
indication
(CR-TPDU)

T.CONNECT.
indication

T.CONNECT.
responseN.UNIT_DATA.

(CC-TPDU)
N.UNIT_DATA.
indication
(CC-TPDU)

request

request

l4_prot_e.fm 13 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

2. Internet Transport Layer (in General & Addressing)

Internet architecture
Host A

Application

Transport

Internet

Network
Interface

Host B

Application

Transport

Internet

Network
Interface

Internet

Network
Interface

Physical Net 2Physical Net 1

Gateway G

identical
packet

identical
message

identical
datagram

identical
frame

identical
datagram

identical
frame

l4_prot_e.fm 14 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Well-Known Internet Protocols

ARP = Address Resolution Protocol
FTP = File Transfer Protocol
HTTP = Hypertext Transfer Protocol
IP = Internet Protocol
ICMP = Internet Control Message Protocol
LLC = Logical Link Control
MAC = Media Access Control
NFS = Network File System
SMTP = Simple Mail Transfer Protocol
TELNET = Remote Login Protocol
SCTP = STREAM CONTROL TRANSMISSION PROTOCOL
TCP = TRANSMISSION CONTROL PROTOCOL
UDP = USER DATAGRAM PROTOCOL

And further protocols including
IMAP= Interactive Mail Access Protocol, NNTP=Network News Transfer Protocol
POP3= Post Office Protocol

SMTP HTTP FTP TELNET NFS RTP
SCTP

TCP UDP

IP + ICMP + ARP

WANs
ATM, ...

LLC & MAC
Physical

LANs, MANs
Ethernet, ...

l4_prot_e.fm 15 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Transport Layer

Application

• communication between applications required
• application communicate

• locally by interprocess communication
• between system via TRANSPORT SERVICES

Transport layer
• interprocess communication via communication networks
Internet Protocol IP
• enables endsystem-to-endsystem communication

Telnet
Client

Telnet
Server

FTP
Client

FTP
Server

Internet

network
interface

Transport

Web
Client

Web
Server

l4_prot_e.fm 16 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

2.1 Port - Addressing Concept

3 types of identifiers: names, addresses and routes
[Shoch 78]
“The NAME of a resource indicates WHAT we seek, an
ADDRESS indicates WHERE it is, and a ROUTE tells HOW TO
GET THERE
• address identifies

• type of service or application
• addressing by process number is unsuitable

• processes are generated/terminated dynamically,
i.e. the process number rarely known

• relationship “service - process” not fix
• 1 process can supply multiple services
• various processes can provide same service

⇒ Concept of an abstract communication endpoint: Port

Service A Service B

P1 P3
P4 P5

P2

Service C

l4_prot_e.fm 17 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Communication Ports

Service
• related to exactly one single port
Port access
• asynchronous or
• synchronous
Port
• associated with buffer

Service Service

P1 P2 P3 P4 P5

B C
Ports

A

Buffer

l4_prot_e.fm 18 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Reserved Port Numbers

• TCP and UDP have their own assignments
• this table shows some examples for TCP

Decimal Keyword UNIX Keyword Description

0 Reserved

1 TCPMUX TCP Multiplex

5 RJE Remote Job Entry

7 ECHO echo Echo

9 DISCARD discard Discard

11 USERS systat Active Users

13 DAYTIME daytime Daytime

15 netstat Network status program

17 QUOTE qotd Quote of the Day

19 CHARGEN chragen Character Generator

20 FTP-DATA FTP-DATA FILE TRANSFER PROTOCOL (DATA)
21 FTP FTP FILE TRANSFER PROTOCOL

23 TELNET TELNET TERMINAL CONNECTIONS

25 SMTP SMTP SIMPLE MAIL TRANSFER PROTOCOL

37 TIME time Time

42 NAMESERVER name Host Name Server

l4_prot_e.fm 19 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Reserved Port Numbers (2)

Decimal Keyword UNIX Keyword Description

43 NICNAME whois Who is

53 DOMAIN nameserver Domain Name Server

77 rje any private rje service

79 FINGER finger Finger

80 HTTP HTTP WORLD WIDE WEB

101 HOSTNAME hostname NIC Host Name Server

102 ISO-TSAP iso-tsap ISO TSAP

103 X400 x400 X.400 Mail Service

104 X400-SND x400-snd X.400 Mail Sending

110 POP3 POP3 REMOTE EMAIL ACCESS

111 SUN RPC sunrpc SUN Remote Procedure Call

113 AUTH auth Authentication Service

117 UUCP-PATH uucp-path UUCP Path Services

119 NNTP nntp USENET News Transfer Protocol

129 PWDGEN Password Generator Protocol

139 NETBIOS-SSN NETBIOS Session Protocol

160-
1023 Reserved

l4_prot_e.fm 20 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

2.2 Port - Link to Application

Application
• example

• decompression of video data
• read process from database or file system

• implementation of application
• process, thread

• interface to communication systems
• buffers with predefined access mechanisms

Sender and receiver create
• stream or
• socket

• several connections share a socket
• address: IP address of the endsystem
• address: 16-bit port number

• 0..1024: predefined ports, “well known”
• additional ones managed dynamically

Example:
192.169.100.17:80 socket with
IP address 192.169.100.17 and port no. 80

l4_prot_e.fm 21 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

3. UDP - User Datagram Protocol

Specification:
• RFC 768

UDP is a simple transport protocol
• unreliable
• connectionless
• message-oriented
⇒ UDP is mostly IP with short transport header

• source and destination port
• ports allow for dispatching of messages to receiver process

Characteristics
• no flow control

• application may transmit as fast as it can / want and the network permits
• no error control or retransmission

• no guarantee about packet sequencing
• packet delivery to receiver not ensured
• possibility of duplicated packets

• may be used with broadcast / multicasting and streaming

l4_prot_e.fm 22 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

UDP: Message Format

Sender port
• 16 bit sender identification
• optional
• response may be sent there
Receiver port
• receiver identification

Packet length
• in byte (including UDP header)
• minimum: 8 (byte)

• i.e. header without data

Checksum
• of header and data for error detection
• use of checksum optional

 Sender Port Receiver Port

 Packet Length Checksum

 Data

0 16 31

...
..

UDP Header

l4_prot_e.fm 23 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

UDP: Message Format - Checksum

Purpose
• error detection (header and data)
Same algorithm as IP
• one’s complement of sum of 16-bit halfwords

in one’s complement arithmetic
UDP checksum includes
• UDP header (checksum field initially set to 0)
• data
• pseudoheader

• part of IP header
• source IP address
• destination IP

address
• protocol
• length of (UDP) data

• allows to detect misdelivered UDP messages
Use of checksum optional
• i.e., if checksum contains only "0"s, it is not used

• transmit 0xFFFF if calculated checksum is 0

00000000 UDP segment lengthProtocol

Source Address
Destination Address

0 8 16 24 31

l4_prot_e.fm 24 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

UDP: Ranges of Application

Benefits of UDP
• needs very few resources (in endsystems, in each data unit)
• no connection establishment (hence, no overhead, faster transmission)
• simple implementation possible (e.g. suitable for boot PROM)
• applications can precisely control

• packet flow
• error handling / reliability
• timing

Suitable for simple client-server interactions, i.e. typically
• 1 request packet from client to server
• 1 response packet from server to client
Used by e.g.
• DNS: Domain Name Service
• SNMP: Simple Network Management Protocol
• system status
• bootstrap protocol
• TFTP: Trivial File Transfer Protocol (but not ftp!)
• NFS: Network File System
• RTP: Real-time Transport Protocol

l4_prot_e.fm 25 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

4. TCP - Transmission Control Protocol
Overview

TCP: is the transport protocol (the major Internet transport protocol)

Motivation: network with connectionless service
• packets and messages may be

• duplicated, in wrong order, faulty
• i.e., with such service only, each application would have to provide recovery

• error detection and correction
• network or service can

• impose packet length
• define additional requirements to optimize data transmission
• i.e., application would have to be adapted

⇒ TCP is the Internet transport protocol providing
• reliable end-to-end byte stream over an unreliable internetwork

History
• RFC 793: originally
• RFC 1122 and RFC 1323: errors corrected, enhancements implemented

l4_prot_e.fm 26 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

What is TCP?

TCP is
• a communication protocol

• not a piece of software
• (compare: programming languages, compilers)

TCP specifies
• data and control information formats
• procedures for

• flow control
• error detection and correction
• connect and disconnect

• as a primary abstraction
• a connection
• not just the relationships of ports (as a queue, like UDP)

TCP does not specify
• the interface to the application

(sockets, streams)

l4_prot_e.fm 27 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

4.1 TCP in Use & Application Areas

Each machine supporting TCP has a TCP transport entity
• library procedure
• user process
• part of kernel
TCP transport entity manages
• TCP streams
• interfaces to IP layer
TCP transport entity on sending side
• acceptes user data streams for local processes
• splits them into pieces <= 64 KB

• typically 1460 bytes
• (to fit into single Ethernet frame with IP and TCP headers)

• sends each piece as separate IP datagram
TCP transport entity on receiving side
• gets TCP data from datagrams received at host
• reconstructs original byte streams
TCP must ensure reliability
• IP layer doesn’t guarantee that datagrams will be delivered properly / in

order (TCP must handle this, e.g. timeout and retransmit / reorder)

l4_prot_e.fm 28 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

TCP in Use & Application Areas (2)

Benefits of TCP
• reliable data transmission
• efficient data transmission despite complexity

• (up to 8Mbps on 10Mbps ethernet)
• can be used with LAN and WAN for

• low data rates (e.g. interactive terminal) and
• high data rates (e.g. file transfer)

Disadvantages when compared with UDP
• higher resource requirements

• buffering, status information, timer usage
• connection set-up and disconnect necessary

• even with short data transmissions

Applications
• file transfer (FTP)
• interactive terminal (Telnet)
• e-mail (SMTP)
• X-Windows

l4_prot_e.fm 29 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

4.2 TCP Characteristics

Data stream oriented
• TCP transfers serial byte stream
• maintains sequential order

Unstructured byte stream
• application often has to transmit more structured data
• TCP does not support such groupings into (higher) structures within byte

stream
Buffered data transmission
• byte stream not message stream: message boundaries are not preserved

• no way for receiver to detect the unit(s) in which data were written

• for transmission the sequential data stream is
• divided into segments
• delayed if necessary (to collect data)

• for more efficient transmission (e.g. network utilization)

D A B C D

IP header TCP header

data from / to TCP applicationdata sent via IP

A B C

WRITE / READ call

l4_prot_e.fm 30 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

TCP Characteristics (2)

Virtual connection
• connection established between communication parties before data

transmission

Two-way communications (fully duplex)
• data may be transmitted simultaneously in both directions over a TCP

connection

Point-to-point
• each connection has exactly two endpoints

Reliable
• fully ordered, fully reliable

• sequence maintained
• no data loss, no duplicates, no modified data

l4_prot_e.fm 31 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

TCP Characteristics: SomeProtocol Elements & Fea-
tures (3)

Error detection
• through checksum
Piggybacking:
• control information and data can be transmitted within the same segment
Out-of-band data: expedited data
• important information sent to receiver
• i.e. should get to receiver’s application

before data that was sent earlier
PUSH operation
• data is not stored in a buffer
• sent immediately and

immediately made available to application on receiver’s end
example <CR> end of line at terminal emulation

Urgent flag
• send and transfer data to application immediately

example <Crtl C>
arrival interrupts receiver’s application

l4_prot_e.fm 32 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

TCP Characteristics (missing)

(missing) Characteristics
• no broadcast

• no possibility to address all applications
• with connect, however, not necessarily sensible

• no multicasting
• group addressing not possible

• no QoS parameters
• not suited for different media characteristics

• no real-time support
• no correct treatment/communications of audio or video possible
• e.g. no forward error correction

l4_prot_e.fm 33 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

4.3 Connection - Addressing

TCP service obtained via service endpoints on sender and receiver
• typically socket
• socket number consists of:

• IP address of host and
• 16-bit local number (port)

Port
• TCP’s name for TSAP

TCP connection is clearly defined by
a quintuple consisting of
• IP address of SENDER and RECEIVER
• port address of SENDER and

RECEIVER
• TCP protocol identifier

⇒ Applications can use the same
local ports for several
connections

1

4

3.3.3.3

2

2.2.2.2

3

(1.1.1.1/1/2.2.2.2/3/6)

IP addr.sender/port sender/ ..
(1.1.1.1/1/2.2.2.2/2/6)

../IP addr.rec/port rec/TCPid

1.1.1.1

l4_prot_e.fm 34 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Connection - Addressing (2)

Passive open:
• process indicates that it would accept connect request
Active open:
• process requests a connection

Addressing:
• port number + protocol identification

• clearly identifies entity in the ES
• IP address

• clearly identifies ES

Connection

Port ProcessProcess Port

l4_prot_e.fm 35 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

5. TCP - Protocol, PDU Format, Segments

TCP/IP Header Format

Type of ServiceVersion

32 bits

IHL Total length

Identification Fragment offset

Time to live Protocol Header checksum
Source address

Destination address
Options

D
F

M
F

Source port Destination port
Sequence number

Piggyback acknowledgement

Checksum

Window

Urgent pointer
Options (0 or more 32 bit words)

Data

TCP
header
length

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

IP Header

TCP Header

l4_prot_e.fm 36 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Segments

TCP entitites exchange data in form of SEGMENTS

TCP segment consists of
• fixed 20 byte header (plus optional part)
• zero or more data bytes

TCP software (entity) decides
• segment size to be used

• data from several writes can be accumulated into one segment
• or data from one write can be split into several segments

• limits
• each segment (including TCP header) must fit into 65515 byte IP payload
• segment must fit into maximum transfer unit (MTU) of visited networks

• each network may have MTU, depending on L2 technology used
• often 1500 byte (Ethernet payload size),

typical upper bound on segm. size
• further on (if really needed) IP will "fragment" packets

if they are too large for visited networks

l4_prot_e.fm 37 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Identification of TCP-Packets i.e. Segments

A key feature:
• every byte on TCP connection has its own 32-bit sequence number

Separate sequence numbers used for
• data
• acknowledgements
• window mechanism

Remember:
• 32-bit sequence number space was big in early days of the Internet
• nowadays, it can be consumed very fast

l4_prot_e.fm 38 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Protocol with Flow Control

TCP uses: SLIDING WINDOW protocol
• sender starts timer when it transmits segment
• receiving TCP entity sends back a segment

• with data if any, otherwise without data
• acknowledgment number equal to next sequence number it expects to

receive
• if sender’s timer goes off before acknowledgement arrives,

segment is retransmitted

l4_prot_e.fm 39 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

5.1 Segments, Fragmentation (and Reassemblation)

Segments
• TCP DATA STREAM split into segments

• SEGMENTS sent as IP packets

Fragments
• IP packets are split (if necessary) into FRAGMENTS in order to adapt them to

underlying networks

Transport layer
• reassembles segments and fragments

l4_prot_e.fm 40 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Segments, Fragmentation (and Reassemblation) (2)

fragment

fragment

ID=
 43

MF=
 0

FA=
 0

FA=
 0

FA=
 13

FA=
 26

MF=
 1

MF=
 1

MF=
 0

ID=
 43

ID=
 43

ID=
 43 fragment

TCP header + data

IP header 20 byte 250 Byte

IP header 20 byte

IP header 20 byte

IP header 20 byte

104 byte

104 byte

42 byte

ID: Datagram
Identification

MF: More Fragments
0: no
1: yes

FA: Fragment Offset
n: n*8 byte

l4_prot_e.fm 41 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

5.2 Protocol with Flow Control

SOURCE PORT
DESTINATION PORT local endpoints of connection
SEQUENCE NUMBER Number of transmitted bytes

(each byte of the “message” is numbered)
ACKNOWLEDGEMENT Byte number referring to the acknowledgement,

specifies next byte expected
HLEN Length of the header in 32 bit words. Needed since

Options field is of variable length indicates start of
data within segment (in 32-bit words)

RESERVED not used
FLAGS Bits from left to right

1. URG Urgent Pointer is being used
2. ACK AckNo is valid (if ACK=0 then no acknowledgment in

segment)
3. PSH data transferred with PUSH. Receiver should give received

data to application immediately, not waiting & buffering until
more / full buffer has been got

4. RST Reset: connection is being reset
5. SYN used to establish connections (synchronize seq. numbers)

SYN=1 & ACK=0: connection request
SYN=1 & ACK=1: connection accept

6. FIN release connection

l4_prot_e.fm 42 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Protocol with Flow Control (3)

WINDOW SIZE Buffer size in bytes
Used for variable-sized sliding window.
Window size field indicates #bytes sender may transmit
beginning with byte acknowledged.
Window size = 0 is valid: bytes up to ACK-1 received
but receiver does not want more data at the moment.
Later permission for more data by sending segment with
same ACK and non-zero window size

CHECKSUM Checksum header, data, and pseudoheader
for calculation: TCP checksum field is set to 0 and data
field padded with additional zero byte. If length is odd
one’s complement of sum of 16-bit halfwords in one’s
complement arithmetic.
Receiver’s calculation on entire segment including
checksum field should result in 0

• pseudoheader
• part of IP header

• source IP addr.
• dest. IP addr.
• protocol
• length of TCP segment (including header)

• allows to detect misdelivered packets
• but violates protocol hierarchy

00000000 TCP segment lengthProtocol=6

Source Address
Destination Address

0 8 16 24 31

l4_prot_e.fm 43 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Protocol with Flow Control (4)

URGENT POINTER Byte offset to the current sequence number at which
important data starts

OPTIONS for optional facilities, not covered by regular header,
e.g., allows to specify max. TCP payload host may
accept.
Without option, it defaults to 536 byte payload.
Window scale option (to deal with 64 KB window
limitation).
Shift window size field up to 14 bits to left
maximum window then 230 byte.
Selective repeat instead of go-back-n
NAKs to allow receiver to request a specific segment

l4_prot_e.fm 44 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

6. TCP: Connections & Management

Notion of connections

How connections work

How connections are "remembered"

l4_prot_e.fm 45 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

6.1 Connection Establishment

One passive & one active side
• server: wait for incoming connection using LISTEN and ACCEPT
• client: CONNECT (specifying IP addr. and port, max. TCP segment size)

Three-Way-Handshake
• CONNECTING through 3 packets

Comments
• when establishing a connection

• initial sequence numbers of
both partners are also
exchanged and acknowledged

• initial seq.# is not 0
• SYN segment consumes one

byte of sequence space
• in order to be acknowledged

unambiguously

send

receive

send

ACK y+1)

SYN(SEQ=x)

 SYN+ACK

SYN(SEQ=x+1,

Host 1 Host 2

receive SYN

send

receive SYN+
ACK

ACK=x+1)
SYN(SEQ=y,

l4_prot_e.fm 46 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Connection Establishment (2)

Comments
• if on server side no process is waiting on port (no process did LISTEN)

• reply segment with RST bit set is send to reject connection attempt
• process listening on port may accept or reject

Call collision
• still only one single

connection will be
established even when

• both partners actively try
to establish a connection
simultaneously

send

send

ACK=y+1)

SYN(SEQ=x)

SYN(SEQ=x,

Host 1 Host 2

send

send
SYN(SEQ=y)

SYN(SEQ=y,
ACK=x+1)

l4_prot_e.fm 47 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

6.2 Connection Release

Connection release for pairs of simplex connections
• each direction is released independently of other

Connection release by either side sending a segment with FIN bit set
• no more data to be transmitted
• when FIN is acknowledged, this direction is shut down for new data

Directions are released independently:
• other direction may still be open
• full release of connection if both directions have been shut down

l4_prot_e.fm 48 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Connection Release (2)

Systematic disconnect by 4
segments
• between 2nd and 3rd

• host 2 can still send data to host
1

Reduction of packet number
possible:
• first ACK and second FIN may be

contained in same segment
(3 segments instead of 4)

CONNECTION INTERRUPT: Opposite
side cannot transmit data anymore
• immediate acknowledgement,

release of all resources
• data in transit may be lost

1

2

3

4

send

receive

send

receive

Host 1

receive FIN

send ACK x+1
(inform application)

send FIN seq=y,

receive ACK

Host 2

ACK+FIN

 ACK y+1

 ACK

FIN seq=x

 ACK x+1

l4_prot_e.fm 49 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

6.3 Connection Management Modelling

States

State Description
CLOSED No connection is active or pending
LISTEN Server is waiting for an incoming call

SYN RCVD Connection request has arrived; wait for ACK
SYN SENT Application has started to open a connection

ESTABLISHED Normal data transfer state
FIN WAIT 1 Application has said it is finished
FIN WAIT 2 The other side has agreed to release

TIMED WAIT Wait for all packets to die off
CLOSING Both sides have tried to close simultaneously

CLOSE WAIT The other side has initiated a release
LAST ACK Wait for all packets to die off

l4_prot_e.fm 50 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

States

CLOSED

LISTEN

ESTABLISHED

SYN_RCVD SYN_SENT

CLOSE_WAIT appl: close

send: FIN

active open

passive open

data ttransfer state

appl: passive open

send: <nothing>

recv
: SYN; se

nd:
SYN, ACK

recv
: RST

appl: close

send: FIN

recv: ACKsend: <nothing>

a

recv: FIN

send: ACK

send:
ACK

recv:
SYN, ACK

recv: SYN

send: SYN, ACK

simultaneous open

appl: close

or timeout

appl: send datasend: SYN

LAST_ACK

passiver close
2MSL timout

send SYN
appl: active open

starting point

CLOSING

FIN_WAIT_2

FIN_WAIT_1

TIME_WAIT

send FIN
appl: close

recv:ACK
send:nothing send:ACK

recv:FIN ACK

recv:FIN
send:ACK

recv:ACK
send:nothing

recv:FIN
sendACK 2mSLtimeout

normal transition for client
normal transition for server

APPL: indicate state transition taken

RECV: indicate state transition

SEND: indicate what is sent for this transition

when application issue

when segment receive

l4_prot_e.fm 51 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Connection Management Modelling: Finite State Machine

Typical sequence of TCP states visited by client TCP

CLOSED

ESTABLISHED

SYN_SENT

active open

data transfer state

send:
ACK

recv:
SYN, ACK

send SYN
appl: active open

starting point

FIN_WAIT_2

FIN_WAIT_1

TIME_WAIT

send FIN
appl: close

recv:ACK
send:nothing

recv:FIN
sendACK 2mSLtimeout

l4_prot_e.fm 52 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Connection Management Modelling: Finite State Ma-
chine (2)

Typical sequence of TCP states visited by server-side TCP

CLOSED

LISTEN

ESTABLISHED

SYN_RCVD

CLOSE_WAIT appl: close

send: FIN

passive open

data transfer state

appl: passive open

send: <nothing>

recv
: SYN; se

nd:
SYN, ACK

recv
: RST

recv: ACKsend: <nothing> recv: FIN

send: ACK

LAST_ACK

passiver close
2MSL timout

starting point

l4_prot_e.fm 53 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

7. TCP - Foundations

Some principles related to the TCP basics
• flow control
• round trip time RTT
• congestion control

• Additive Increase: Example Slow Start
• Multiplicative Decrease

And 2 problem areas: (to be considered separately)
• receiver capacity (“actual window”)
• network capacity (“congestion window”)

l4_prot_e.fm 54 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

7.1 Flow Control

Flow control: “sliding window” mechanism
• acknowledgement and sequence number

• acknowledgments refer to byte positions
• not to whole segment

• sequence numbers refer to the byte position of a TCP connection
• positive acknowledgement
• cumulative acknowledgements

• byte position in the data stream up to which all data has been received
correctly

• reduction of overhead

Variable window sizes (credit mechanism)
• implementation

• the actual window size is also transmitted with each acknowledgement
• permits dynamic adjustment to existing buffer

l4_prot_e.fm 55 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

TCP Flow Control: Example

Application
does a 2K
write

Application
does a 2K
write

Application
reads 2KSender is

blocked

Sender may
send up to 2K

Receiver´s
buffer

0 4K

2K

2K

Empty

Full

2K SEQ = 0

2K SEQ = 2048

1K SEQ = 4096

ACK = 2048 WIN = 2048

ACK = 4096 WIN = 0

ACK = 4096 WIN = 2048

2 K1K

Sender Receiver

(but, it sends 1K)

l4_prot_e.fm 56 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

TCP Flow Control: Special Cases

Optimization for low throughput rate
• problem: Telnet (and ssh) connection to interactive editor reacting on

every keystroke
• 1 character typed requires up to 162 byte

• data: 20 bytes TCP header, 20 bytes IP header, 1 byte payload
• ACK: 20 bytes TCP header, 20 bytes IP header
• editor echoes character:

20 bytes TCP header, 20 bytes IP header, 1 byte payload
• ACK: 20 bytes TCP header, 20 bytes IP header

• approach often used
• delay acknowledgment and window update by 500 ms (hoping for more data)

Nagle’s algorithm, 1984
• algorithm

• send first byte immediately
• keep on buffering bytes until first byte has been acknowledged
• then send all buffered characters in one TCP segment and start buffering

again
• comment

• effect at e.g. X-windows: jerky pointer movements

l4_prot_e.fm 57 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

TCP Flow Control: Special Cases (2)

Silly window syndrome (Clark, 1982)
• Problem:

• data on sending side arrives in large blocks
• but receiving side reads data at one byte at a time only

• Clark’s solution:
• prevent receiver from sending window update for 1 byte
• certain amount of space must be available in order to send window update

• min(X,Y)
X = maximum segment size announced during connection establishment
Y = buffer / 2

Receiver’s buffer is full

Receiver’s buffer is full

Room for one more byte

Application reads 1 byte

Window update segment sent
New byte arrives

Header

Header

1 byte

window size = 0
Sender

l4_prot_e.fm 58 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

7.2 Timer Management

TCP uses several timers for different purposes

Retransmission timer as most important one
• timer is set when segment is sent
• if ACK arrives before timer expires: timer is stopped
• if timer expires before ACK arrives: segment is retransmitted

• and new timer is set

Question: How long should the timeout interval be?

l4_prot_e.fm 59 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Timer Management (2)

Timeout after a certain time period
Situation in the Internet:
packet communication time may vary
immensely
• timeout too short

• fast reaction due to any errors
• but correct packets retransmitted

• timeout too long
• too slow reaction due to errors
• less additional traffic

Better: adaptive timeout intervals
• timeout period (until retransmit)

• continuous adaptation to pre-
calculated, expected waiting period

• waiting period increases for each
retransmission of the same segment

Time out0.3

0.2

0.1

0
0 10 20

round trip time (msec)

P
ro

ba
bi

lit
y

30 40 50

Ideal situation:

T1 T20.3

0.2

0.1

0

P
ro

ba
bi

lit
y

0 10 20
round trip time (msec)

30 40 50

time out
too short

time out
too long

Example of real situation

l4_prot_e.fm 60 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Timer Management (3)

Relevant parameters
• RTT: Round Trip Time (or Round Trip Sample)

• time between
• sending of octet and the receiving of respective acknowledgment

• timeout: initiates retransmission
Algorithm (Jacobson, 1988)

α Smoothing factor-
• 0..1 determines importance of the history
• 0: only current/last value is relevant
• 7/8 TYPICAL VALUE
• 1: only old values are relevant

β (later/today proportional to the average deviation)
• 1: faster error correction
• 2: original value in implementations
• COMMENT: usually hard to define (as fixed value)

RTT α Old_RTT×() 1 α–() New_Round_Trip_Sample×()+=
Timeout β RTT×=

l4_prot_e.fm 61 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

RTT Calculation in Case of Error Recovery

How to handle dynamic RTT estimation when segment must be resent?

Situation: ambiguous measurement
• t1: retransmit initiated because of timeout
• t2: acknowledgement arrives at the receiver’s

Question:
• does confirmation refer to

• 1. data which has previously been thought as being lost?
or

• 2. data which has been sent last?
• problem: no differentiation possible

This influences the definition/parameter setting of the timeout
• by the RTT measured

l4_prot_e.fm 62 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

RTT Calculation in Case of Error Recovery (2)

Situation: ambiguous measuring
1ST assumption: reference to the data sent first (originally)
• but situation is following

• short-term increase in the delay
• for any unknown reason

• but not really any loss of data
• acknowledgement arrives shortly after timeout

• result
• New-Round_Trip_Sample: has very high values
• RTT increases

• sender
• now, if sender detects (at later time) packets that have been lost

• retransmits at a (very) later point in time
• consequently acknowledgements are also returned later

• global effect:
• RTT may increase even more and more

l4_prot_e.fm 63 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

RTT Calculation in Case of Error Recovery (3)

Situation: ambiguous measuring
2ND assumption: reference to last retransmitted data
• but situation occurred due to

• Internet in fact losses data
• result

• New_Round_Trip_Sample: has smaller value
• RTT is reduced

• sender
• may set time interval which may be too short
• the acknowledgement of the first packages will again further reduce RTT

• global effect:
• RTT gets too small
• usually at 1/2 of the actual value

• i.e. on the average each segment will be sent twice

l4_prot_e.fm 64 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

RTT Calculation in Case of Error Recovery (4)

Fix: (Phil) Karn’s algorithm
• ignore the measurements of lost packets

• but this would not reflect actual system changes in a correct manner
• previous algorithm

• timer backoff strategy

• increase timeout for each lost packet (actually each segment) until a
segment has arrived

• γ-value: typically 2
• comment:

• originated from Phil Karn
• Karn used TCP based on (very unreliable) radio transmission

RTT α Old_RTT×() 1 α–() New_Round_Trip_Sample×()+=
Timeout β RTT×=

New_Timeout ϒ TimeOut×=

l4_prot_e.fm 65 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

RTT Calculation in Case of Error Recovery (5)

Further improvements
• Karn’s algorithm

• bad adjustment whenever
• variation of consecutive delays is large
• e.g. short-long-short-long ...

• high load means
• often large fluctuations within the delays
• larger deviation (as well as average runtime deviation)

"höhere Standardabweichung (und mittlere Abweichung)"
• therefore deviation to be used (instead of β)

• previously

• new algorithm

RTT α Old_RTT×() 1 α–() New_Round_Trip_Sample×()+=
Timeout β RTT×=

Timeout Function AverageRuntimeDeviation()=

l4_prot_e.fm 66 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

7.3 Congestion Control

(understandably)
diverse objectives
• endsystem

• optimize its own
throughput

• possibly at the
expense of other
endsystems

• network
• optimizes overall

throughput

in example:
• two different problems

• receiver capacity
• network capacity

• cannot be distinguished easily at all places
• should be differentiated

transmission
rate adjustment

transmission
network

internal
congestion

small-capacity
receiver

large-capacity
receiver

l4_prot_e.fm 67 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Congestion Considerations

Problem statement: troughput (easier) and delay (more critical)
e.g.
• 2 senders
• router with

infinite buffer
• no error

recovery
• no flow control

throughput per
connection
• scales linear
delay
• scales exponentially
• large queueing

delays as
concequence of
packet-arrival rate
near link capacity !

(from Kurose, Ross: Computer Networking)

(from Kurose, Ross: Computer Networking)
th

ro
ug

hp
ut

l4_prot_e.fm 68 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Congestion Considerations (2)

General problem
• congestion => more delays at ES
• higher delays => retransmissions (because of timeouts)
• i.e. => additional load increases

I.e. 2 problem areas: (to be considered separately)
• receiver capacity (“actual window”)
• network capacity (“congestion window”)

i.e. to be applied to the send window

TCP strategy
• TCP reduces transfer rate at high network load
• methods

• “slow start” generalization: additive increase
• “congestion avoidance” generalization: multiplicative decrease

valid send window() Min actual window congestion window(,)=

l4_prot_e.fm 69 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Congestion - Additive Increase: Example Slow Start

Objective
• to avoid immediate network overload

• after just recent overload has finished
• after timeout
• at the start of a data transmission

Method: congestion window
• defined/initiated at connection set-up

• initial max. window size = 1 segment
• threshold (based on previous max. window size)

• max. size of segment to be transferred
• to be doubled as long as

1. segment size below a certain threshold and
2. all ACKs arrive in time (i.e. correct segment transfer)

(each burst acknowledged, i.e. successfully transmitted,
doubles congestion window)

• to be linearly increased
1. segment size above a certain threshold and
2. all ACKs arrive in time (i.e. correct segment transfer)

l4_prot_e.fm 70 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Delay - Multiplicative Decrease: Congestion Avoidance

Threshold
• adaptive
• parameter in addition to the actual and the congestion window

Assumption
• threshold, i.e. adaptation to the network: “sensible window size”

Use: On timeout
• threshold is set to half of current congestion window
• congestion window is reset to one maximum segment
• use slow start to determine what the network can handle

• exponential growth stops when threshold is hit
• from there congestion window grows linearly (1 segment) on successful

transmission
Congestion window and threshold
• if

• congestion window < threshold
• exponential growth: congestion window doubled

• congestion window >= threshold
• linear growth: increase congestion window by 1 segment each

l4_prot_e.fm 71 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Congestion Control: Example

Parameters:
• maximum segment size = 1024 bytes
• initial congestion window = 64 KB
Areas
• previously (transm. nr. = 0)

• congestion window = 64 KB
• timeout: i.e. threshold 32 KB
• congestion window = 1 KB

• exponential area:
• “slow start”

• linear area
• “congestion avoidance”

Note: but always
• observe receiver’s window

size, i.e. use minimum of
• congestion window
• actual send window (receiver

status)

44
40
36
32
28
24
20
16
12
8
4
0

0 2 4 6 8 10 12

Timeout

Threshold

14 16 18 20
Transmission number

Threshold

C
on

ge
st

io
n

w
in

do
w

 (i
n

se
gm

en
ts

)

l4_prot_e.fm 72 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Congestion Control: Example (2)

time diagram
of
exponential
area

44
40
36
32
28
24
20
16
12
8
4
0

0 2 4 6 8 10 12

Timeout

Threshold

14 16 18 20 22 24
Transmission number

Threshold

C
on

ge
st

io
n

w
in

do
w

 (i
n

se
gm

en
ts

)

ro
un

d
1

ro
un

d
2

ro
un

d
3

ro
un

d
4

l4_prot_e.fm 73 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

7.4 TCP - Further Comments

Some parameters
• 65.536 byte max. per segment
• IP recommended value TTL interval 2 min

Optimization for low throughput rate
• problem

• 1 byte data requires 162 byte incl. ACK
(if, at any given time, it shows up just by itself)

• algorithm
• acknowledgment delayed by 500 msec because of window adaptation

• comment
• often part of TCP implementation

l4_prot_e.fm 74 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

TCP Friendliness - TCP Compatible

A TCP connection’s throughput is bounded
• wmax - maximum retransmission window size
• RTT - round-trip time

Congestion windows size changes
• AIMD (additive increase, multiple decrease) algorithm

TCP is said to be fair
• Streams that share a path will reach an equal share

A protocol is TCP-friendly if
• Colloquial:

• It long-term average throughput is not bigger than TCP’s
• Formal:

• Its arrival rate is at most some constant over the square root of the packet
loss rate

l4_prot_e.fm 75 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Application Area - Wireless

TCP characteristics
• if data is late, TCP assumes that network is congested
• therefore “slow start” algorithm

Mobile communications channel
• is unreliable and may contain losses

TCP’s behavior on radio channels
• TCP slows down transmission, inefficient
• here it would be better to increase the rate

l4_prot_e.fm 76 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Bandwidth-Delay Product

BANDWIDTH [BITS/SEC] * ROUND-TRIP DELAY [SEC]

Useful parameter for network performance analysis
• Capacity of pipe from sender to receiver and back (in bits)
Example:
• Transmission from San Diego to Boston

• sending 64 KB burst (receiver buffer 64 KB), link: 1 Gbps
• one-way propagation delay (speed-of-light in fiber): 20 msec

• Bandwidth-delay product: 40 MILLION BIT
• i.e.: sender would have to transmit burst of 40 million bits to keep pipe busy

till ACK
Receiver window must be >= bandwidth-delay product
• for good performance

...
...

...Data Acknowledgements

t=0 t=500 µsec t=20 msec t=40 msec

l4_prot_e.fm 77 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

8. Stream Control Transmission Protocol (SCTP)

For signalling with high reliability but, low overhead
⇒ Additional transport protocol from IETF (add. to TCP+UDP)

Specification in
• RFC 2960

• Stream Control Transmission Protocol
• RFC 2719

• Architectual Framework for Signaling Transport
• RFC 3057

• ISDN Q.921-User Adaptation Layer
• see also

http://www.sctp.de/

SMTP HTTP FTP TELNET NFS RTP
SCTP

TCP UDP

IP + ICMP + ARP

WANs
ATM, ...

LLC & MAC
Physical

LANs, MANs
Ethernet, ...

l4_prot_e.fm 78 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

SCTP: Motivation

TCP too limited for some applications:
• e.g., transport signaling from PSTN networks (SS7) over IP-based

networks
Goals:
• initial goal:

• replace SS7 signaling in PSTN with SCTP
• now:

• SCTP as a universal transport protocol (e.g., for HTTP)
• future: replacing TCP??

Examples:
• Strict order-of-transmission delivery of data with multiple streams

⇒ partial order within a stream of multiplexed streams sufficient
• Stream-orientation of TCP inconvenient

• application must set record markings
⇒ better: message-orientation

• TCP cannot deal with multi-homing
• i.e., one server with several IP addresses

• TCP is vulnerable to DoS attacks
• e.g., SYN flooding

l4_prot_e.fm 79 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

SCTP Concepts: Association and Streams

Connection-oriented:
• concept of ‘association‘

• bi-directional
• generalization of TCP-connections:

• each association endpoint can have several IP addresses (multi-homing)
• each association can contain several streams (multi-streaming)

• Stream: sequence of user messages to be delivered in order
(up to 216 per direction)

⇒ in contrast to the notion of ‘stream‘ of TCP

• Reliable data transfer
• confirmed, no duplicates, error-free

Stream A:

Stream B:

Stream C:

Association

l4_prot_e.fm 80 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

SCTP Concepts: Strict vs. Partial Order

Strictly ordered delivery optional
• packets of a stream within an association are delivered in order

• partial order
• optional: retain order between packets of all streams

• strict order
• effects

• strict order: data transmission stalled if one stream is stalled
• partial order: transmission for non-stalled streams can continue

Example: HTTP with multiple embedded files (images)
• Order of arrival of image data not relevant
• Retrieving the text can continue even if loading the image is blocked

• e.g., if the image is located on a different server which is highly loaded

Stream A:

Stream B:

Stream C:

Association sent 1 2 3

1

1 2

111 22 3

STRICT ORDER

111 22 3

PARTIAL ORDER

111 223

to the network
Association arriving
at the receiver

l4_prot_e.fm 81 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

SCTP: Further Concepts

Message segmentation according to path-MTU
• Path-MTU:

• maximum transfer unit supported on the path between the endpoints
• Path-MTU discovery mechanism as specified in RFC 1191

Test whether the communication partner is alive: Heartbeats

Flow control and congestion control similar to TCP (Selective Ack,...)
• Coexistance with TCP

Security means:
1. 32-bit checksum (Adler-32, CRC-32 under discussion)
2. 4-way handshake using cookies against DoS attacks

l4_prot_e.fm 82 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

SCTP: 4-way Handshake

No half-open states as in TCP
No state information kept at the station receiving the ‘INIT‘ message
• no vulnerability for SYN flooding
• state information established only after the third step,

the ‘COOKIE‘ message
To increase efficiency
• user data can be sent already with the ‘COOKIE‘ and ‘COOKIE ACK‘

messages

State Action
Closed

Cookie
wait

Cookie
sent

Estab-
lished

Start
timer

time

Action State

Closed

time

Generate
cookie

INIT

Stop
timer
Start
timer
Stop
timer

Estab-
lished

Verify
cookie

INIT ACK
(with cookie)

COOKIE ECHO

COOKIE ACK

l4_prot_e.fm 83 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

SCTP: Message format

Multiplexing of several user messages: Chunk Bundling
• Chunk: part of an SCTP packet belonging to a single stream

Common Header:

• source port / destination port (2 Byte each): As in TCP or UDP
• verification tag: for validation of the sender of the SCTP message

• protection against blind attacks (unauthorized shutdown of association)
• checksum:

• Adler-32: currently proposed in the RFC
• CRC-32: proposed recently, better error detection properties for small

packets

Common Header
Chunk 1
Chunk 2

...
Chunk n

Source Port Destination Port
Verification Tag

Checksum

l4_prot_e.fm 84 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

SCTP: Chunk Format

General format of a chunk:

• Chunk Type:
• type of information in the Chunk Value field
• e.g., type=0: payload data; type=1: INIT message,...

• Chunk Flags:
• depend on the chunk type

• Chunk Length:
• length of the chunk in bytes

• including type, flags, length

Chunk Type Chunk Flags Chunk Length
Chunk Value

l4_prot_e.fm 85 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

SCTP: INIT Chunk Format

• Initiate Tag: random number used in all subsequent messages
• protect against blind attacks

• Advertised Receiver Credit Window:
• dedicated buffer space reserved for the association

• Number of outbound streams:
• the sender of this INIT chunk wants to open

• Number of inbound streams:
• maximum the sender of this INIT message can support

• Variable-Length parameter
• a.o.: list of IP addresses (MULTI-HOMING!) being part of the association

Type=1 Flags: None Chunk Length
Initiate Tag

Advertised Receiver Credit Window
Number of outbound streams Number of inbound streams

Initial Transmission Sequence Number
Optional/Variable-Length Parameters

l4_prot_e.fm 86 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

SCTP: DATA Chunk Format

Example: Format of a DATA chunk (i.e., non SCTP control message)

• Flags (one bit each):
• Unordered bit: ’1’ indicates unordered DATA chunk, ’0’ an ordered DATA

chunk
• Beginning bit: ’1’ first fragment of a user message
• End bit: ’1’ last fragment of a user message

• Transmission Sequence Number (32 bits) => 4,300 Mio numbers
• unique per stream
• used for acknowledgments and duplicate recognition

• acknowledgements are given per message (selective ACK)
•

• ...

Type=0 Flags: U | B | E Chunk Length
Transmission Sequence Number (TSN)

Stream Identifier S Stream Sequence Number n
Payload Protocol Identifier

User Data (seq n of Stream S)

l4_prot_e.fm 87 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

SCTP: DATA Chunk Format (2)

• ...
• Stream Identifier (16 bits)
• Stream Sequence Number (16 bits)

• unique per stream
• used to assure sequenced delivery within a stream
• separate acknowledgement mechanism from sequenced delivery

• If fragmentation is necessary, stream sequence number is the same for
all fragments

• Payload Protocol Identifier (e.g., RTP)
• User Data: the actual user data to send via SCTP
•

Type=0 Flags: U | B | E Chunk Length
Transmission Sequence Number (TSN)

Stream Identifier S Stream Sequence Number n
Payload Protocol Identifier

User Data (seq n of Stream S)

l4_prot_e.fm 88 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

9. Further Development of Transport Protocols

Motivation
• networks and applications have changed
Networks
• higher data rates
• also farther distances (e.g. also via satellite)
• networks for data storage

Bandwidth-Delay Product increses
BANDWIDTH [BITS/SEC] * ROUND-TRIP DELAY [SEC]

Data amount Data rate Distance×
Velocity of Propagation
---=

Endsystem A

buffer

Endsystem B

buffer

datarate 10 kbps, 1 data unit

capacity of path: 50 bit (at 200.000 km/s)

1000 km

Endsystem A

buffer

Endsystem B

buffer

datarate 1 Gbps, many data units

capacity of path: 5 Mbit
1000 km

l4_prot_e.fm 89 5.November.04

w
w

w
.k

om
.tu

-d
ar

m
st

ad
t.d

e
w

w
w

.h
ttc

.d
e

Further Development of Transport Protocols (2)

Applications
• broadcast and group communication
• services and service transitions
• varieties of media

• text, graphics, ..
• animation, audio, video, ..

